Skip to main content
Log in

An inverse method for determining geometric parameters of heat source models using analytical solutions and regression analysis

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Computational welding mechanics employs a heat source model to describe the heat flux distribution within weldments, for which the geometric parameters are not readily available. To achieve fast and accurate calculation of heat source parameters, this paper proposes an inverse method that combines analytical solutions with regression analysis to determine the geometric parameters. First, an analytical solution of the heat conduction equation based on the conical heat source is derived. Subsequently, a computational procedure is developed in Python software to generate sample data on the multilinear relationship between heat source parameters and molten pool characteristics. Finally, for a set of X70 steel weldments, the heat source calculated by the inverse method is simulated in Abaqus software to obtain the corresponding thermophysical field. The results indicate that the method fits better in the width direction of the molten pool than in the depth direction, with no relative errors exceeding 11 %. Compared to the traditional method, the calculation time was significantly reduced while ensuring accuracy, thereby demonstrating the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Farias, P. R. F. Teixeira and L. O. Vilarinho, Variable profile heat source models for numerical simulations of arc welding processes, Int. J. Therm. Sci., 179 (2022) 107593, DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107593.

    Article  Google Scholar 

  2. F. Farrokhi, B. Endelt and M. Kristiansen, A numerical model for full and partial penetration hybrid laser welding of thick-section steels, Optics and Laser Technology, 111 (2019) 671–686, DOI: https://doi.org/10.1016/j.optlastec.2018.08.059.

    Article  Google Scholar 

  3. Y. Chen, J. Han, Z. Li, L. Xia and Z. Yang, An inverse method for searching parameters of combined welding heat source model, Inverse Probl. Sci. Eng., 22 (6) (2014) 1009–1028, DOI: https://doi.org/10.1080/17415977.2013.850681.

    Article  Google Scholar 

  4. T. R. Walker and C. J. Bennett, An automated inverse method to calibrate thermal finite element models for numerical welding applications, J. Manuf. Process., 47 (2019) 263–283, DOI: https://doi.org/10.1016/j.jmapro.2019.09.021.

    Article  Google Scholar 

  5. R. M. Farias, P. R. F. Teixeira and L. O. Vilarinho, An efficient computational approach for heat source optimization in numerical simulations of arc welding processes, J. Constr. Steel. Res., 176 (2021) 106382, DOI: https://doi.org/10.1016/j.jcsr.2020.106382.

    Article  Google Scholar 

  6. B. Bagheri, F. Sharifi, M. Abbasi and A. Abdollahzadeh, On the role of input welding parameters on the microstructure and mechanical properties of Al6061-T6 alloy during the friction stir welding: experimental and numerical investigation, Proc. Inst. Mech. Eng. Pt. L-J. Mater.-Design Appl., 236 (2) (2022) 299–318, DOI: https://doi.org/10.1177/14644207211044407.

    Google Scholar 

  7. M. Abbasi, B. Bagheri and R. Keivani, Thermal analysis of friction stir welding process and investigation into affective parameters using simulation, J. Mech. Sci. Technol., 29 (2) (2015) 861–866, DOI: https://doi.org/10.1007/s12206-015-0149-3.

    Article  Google Scholar 

  8. M. Abbasi, B. Bagheri and F. Sharifi, Simulation and experimental study of dynamic recrystallization process during friction stir vibration welding of magnesium alloys, Trans. Nonferrous Met. Soc. China., 31 (9) (2021) 2626–2650, DOI: https://doi.org/10.1016/S1003-6326(21)65681-9.

    Article  Google Scholar 

  9. N. Moslemi, S. Gohari, B. Abdi, I. Sudin, H. Ghandvar, N. Redzuan, S. Hassan, A. Ayob and S. Rhee, A novel systematic numerical approach on determination of heat source parameters in welding process, J. Mater. Res. Technol-JMR, 18 (2022) 4427–4444, DOI: https://doi.org/10.1016/j.jmrt.2022.04.039.

    Article  Google Scholar 

  10. M. S. Khan, S. I. Shahabad, M. Yavuz, W. W. Duley, E. Biro and Y. Zhou, Numerical modelling and experimental validation of the effect of laser beam defocusing on process optimization during fiber laser welding of automotive press-hardened steels, J. Manuf. Process., 67 (2021) 535–544, DOI: https://doi.org/10.1016/j.jmapro.2021.05.006.

    Article  Google Scholar 

  11. J. Wrobel and A. Kulawik, Calculations of the heat source parameters on the basis of temperature fields with the use of ANN, Neural Comput. Appl., 31 (11) (2019) 7583–7593, DOI: https://doi.org/10.1007/s00521-018-3594-y.

    Article  Google Scholar 

  12. A. Belitzki, C. Marder, A. Huissel and M. F. Zaeh, Automated heat source calibration for the numerical simulation of laser beam welded components, Prod. Eng. Res. Devel., 10 (2) (2016) 129–136, DOI: https://doi.org/10.1007/s11740-016-0664-9.

    Article  Google Scholar 

  13. D. Rosenthal, Mathematical theory of heat distribution during welding and cutting, Weld. J., 20 (5) (1941) 0043–2296.

    Google Scholar 

  14. J. Goldak, A. Chakravarti and M. Bibby, A new finite element model for welding heat sources, Metallurgical and Materials, Transactions B,, 15 (1984) 299–305, DOI: https://doi.org/10.1007/BF02667333.

    Article  Google Scholar 

  15. C. S. Wu, H. G. Wang and Y. M. Zhang, A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile, Weld. J., 85 (2006) 284S–291S.

    Google Scholar 

  16. P. Li and H. Lu, Hybrid heat source model designing and parameter prediction on tandem submerged arc welding, Int. J. Adv. Manuf. Technol., 62 (5–8) (2012) 577–585, DOI: https://doi.org/10.1007/s00170-011-3829-x.

    Article  Google Scholar 

  17. G. Fu, J. Gu, M. I. Lourenco, M. Duan and S. F. Estefen, Parameter determination of double-ellipsoidal heat source model and its application in the multi-pass welding process, Ships Offshore Struct., 10 (2) (2015) 204–217, DOI: https://doi.org/10.1080/17445302.2014.937059.

    Article  Google Scholar 

  18. H. Kitano and Y. Mikami, Constructing a heat source parameter estimation model for heat conduction finite element analysis using deep convolutional neural network, Mater. Today Commun., 31 (2022) 2352–4928, DOI: https://doi.org/10.1016/j.mtcomm.2022.103387.

    Google Scholar 

  19. Y. Wang, H. Y. Zhao, S. Wu and J. Q. Zhang, Determination of the parameters of the double ellipsoidal heat source model for high-energy beam welding, Transactions of the China Welding Institution, 24 (2003) 67–70+61 (in Chinese).

    Google Scholar 

  20. M. M. Tafarroj and F. Kolahan, A comparative study on the performance of artificial neural networks and regression models in modeling the heat source model parameters in GTA welding, Fusion Eng. Des., 131 (2018) 111–118, DOI: https://doi.org/10.1016/j.fusengdes.2018.04.083.

    Article  Google Scholar 

  21. D. Podder, N. R. Mandal and S. Das, Heat source modeling and analysis of submerged arc welding, Weld. J., 93 (5) (2014) 183–192.

    Google Scholar 

  22. X. Jia, J. Xu, Z. Liu, S. Huang, Y. Fan and Z. Sun, A new method to estimate heat source parameters in gas metal arc welding simulation process, Fusion Eng. Des., 89 (1) (2014) 40–48, DOI: https://doi.org/10.1016/j.fusengdes.2013.11.006.

    Article  Google Scholar 

  23. D. Gery, H. Long and P. Maropoulos, Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding, J. Mater. Process. Technol., 167 (2) (2005) 393–401, DOI: https://doi.org/10.1016/j.jmatprotec.2005.06.018.

    Article  Google Scholar 

  24. S. Zhen, Z. Duan, D. Sun, Y. Li, D. Gao and H. Li, Study on microstructures and mechanical properties of laser-arc hybrid welded S355J2W+N steel, Opt. Laser Technol., 59 (2014) 11–18, DOI: https://doi.org/10.1016/j.optlastec.2013.11.021.

    Article  Google Scholar 

  25. P. L. Li, Study on the simulation of multi-wire submerged arc welding heat source model and appearance of weld, Doctoral Thesis, Shanghai Jiao Tong University (2012) (in Chinese).

Download references

Acknowledgments

The work was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (No. KYCX23_0225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jin.

Additional information

Hui Jin is a Professor of Civil Engineering, Southeast University, Nanjing, China. She received her Ph.D. from Southwest Jiaotong University, Chengdu, China. Her research interests include welded structural fatigue and damage, dissimilar steel welding, and intelligent construction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Jin, H. An inverse method for determining geometric parameters of heat source models using analytical solutions and regression analysis. J Mech Sci Technol 37, 6739–6747 (2023). https://doi.org/10.1007/s12206-023-1141-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-1141-y

Keywords

Navigation