A Graph Theory-Based Automated Twin Recognition Technique for Electron Backscatter Diffraction Analysis

  • Cédric Pradalier
  • Pierre-Alexandre Juan
  • Rodney J. McCabe
  • Laurent Capolungo
Technical Article

Abstract

The present article introduces a new software, Microstructure Evaluation Tool for Interface Statistics (METIS), that performs high-throughput microstructure statistical analysis from electron backscatter diffraction maps. Emphasis is placed on the detection of twin domains in hexagonal close-packed metals. The numerical framework on which METIS is built leverages graph theory, group structures, and associated numerical algorithms to automatically detect twins and unravel both their intrinsic characteristics features and those pertaining to their interactions. The proposed graphical interface allows for the detection and correction of unlikely twin/parent associations rendering the approach applicable to highly deformed microstructures. Twin statistics and microstructural data are classified and saved in a relational database that can be interrogated via either GUI or SQL requests to reveal a wide spectrum of features of the microstructure. Illustration of the approach is performed in the case of zirconium.

Keywords

EBSD Twinning Zirconium Graph theory 

Notes

Acknowledgements

The authors thank C.N. Tomé for the many useful and interesting discussions about twinning crystallography and the relevance of certain statistics.

Funding Information

P.-A. Juan thanks the support of the French State through the National Research Agency (ANR) under the program “Investment in the future” (Labex DAMAS referenced as ANR-11-LABX-0008-01) and the project MAGTWIN (referenced as ANR-12-BS09-0010-02) for its support. R.J. McCabe and L. Capolungo were fully supported by Office of Basic Energy Science, Project FWP 06SCPE401.

References

  1. 1.
    Partridge PG (1967) The crystallography and deformation modes of hexagonal close–packed metals. Metallur Rev 12(118):168–192.  https://doi.org/10.1179/mtlr.1967.12.1.169 Google Scholar
  2. 2.
    Yoo MH (1981) Slip, twinning and fracture in hexagonal close-packed metals. Metallur Trans A 12(3):409–418.  https://doi.org/10.1007/BF02648537 CrossRefGoogle Scholar
  3. 3.
    Yoo MH, Morris JR, Ho KM, Agnew SR (2002) Nonbasal deformation modes of HCP metals and alloys: role of dislocation source and mobility. Metallur Mater Trans A 33(3, SI):813–822.  https://doi.org/10.1007/s11661-002-0150-1 CrossRefGoogle Scholar
  4. 4.
    Kaschner GC, Tomé CN, Beyerlein IJ, Vogel SC, Brown DW, McCabe RJ (2006) Role of twinning in the hardening response of zirconium during temperature reloads. Acta Mater 54(11):2887–2896.  https://doi.org/10.1016/j.actamat.2006.02.036 CrossRefGoogle Scholar
  5. 5.
    McCabe RJ, Cerreta EK, Misra A, Kaschner GC, Tomé CN (2006) Effects of texture, temperature and strain on the deformation modes of zirconium. Philos Mag 86(23):3595–3611.  https://doi.org/10.1080/14786430600684500 CrossRefGoogle Scholar
  6. 6.
    McCabe RJ, Proust G, Cerreta EK, Misra A (2009) Quantitative analysis of deformation twinning in zirconium. Int J Plast 25(3):454–472.  https://doi.org/10.1016/j.ijplas.2008.03.010 CrossRefGoogle Scholar
  7. 7.
    Cahn RW (1953) Plastic deformation of alpha-uranium; twinning and slip. Acta Metall 1(1):49–70.  https://doi.org/10.1016/0001-6160(53)90009-1 CrossRefGoogle Scholar
  8. 8.
    Crocker AG (1965) The crystallography of deformation twinning in alpha–uranium. J Nuclear Mater 16 (3):306–326.  https://doi.org/10.1016/0022-3115(65)90119-4 CrossRefGoogle Scholar
  9. 9.
    Bevis M, Crocker AG (1968) Twinning shears in lattices. Proc R Soc A 304(1476):123.  https://doi.org/10.1098/rspa.1968.0077 CrossRefGoogle Scholar
  10. 10.
    Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39(1–2):1–157.  https://doi.org/10.1016/0079-6425(94)00007-7 CrossRefGoogle Scholar
  11. 11.
    Tomé CN, Lebensohn RA, Kocks UF (1991) A model for texture development dominated by deformation twinning: application to zirconium alloys. Acta Metall Mater 39(11):2667–2680.  https://doi.org/10.1016/0956-7151(91)90083-D CrossRefGoogle Scholar
  12. 12.
    Thompson N, Millard DJ (1952) XXXVIII. Twin formation, in cadmium. London, Edinburgh, Dublin Philos Mag J Sci 43 (339):422-440.  https://doi.org/10.1080/14786440408520175 CrossRefGoogle Scholar
  13. 13.
    Mendelson S (1969) Zonal dislocations and twin lamellae in h.c.p. metals. Mater Sci Eng 4(4):231–242.  https://doi.org/10.1016/0025-5416(69)90067-6 CrossRefGoogle Scholar
  14. 14.
    Mendelson S (1970) Dislocation Dissociations in hcp Metals. J Appl Phys 41(5):1893–1910.  https://doi.org/10.1063/1.1659139 CrossRefGoogle Scholar
  15. 15.
    Vaidya S, Mahajan S (1980) Accommodation and formation of 11-21 twins in Co single crystals. Acta Metall 28(8):1123–1131.  https://doi.org/10.1016/0001-6160(80)90095-4 CrossRefGoogle Scholar
  16. 16.
    Barrett CD, El Kadiri H (2014) The roles of grain boundary dislocations and disclinations in the nucleation of {1 0 2} twinning. Acta Mater 63:1–15.  https://doi.org/10.1016/j.actamat.2013.09.012 CrossRefGoogle Scholar
  17. 17.
    El Kadiri H, Kapil J, Oppedal AL, Hector LG Jr, Agnew SR, Cherkaoui M, Vogel SC (2013) The effect of twin-twin interactions on the nucleation and propagation of twinning in magnesium. Acta Mater 61 (10):3549–3563.  https://doi.org/10.1016/j.actamat.2013.02.030 CrossRefGoogle Scholar
  18. 18.
    Wang J, Hoagland RG, Hirth JP, Capolungo L, Beyerlein IJ, Tomé CN (2009) Nucleation of a twin in hexagonal close-packed crystals. Script Mater 61(9):903–906.  https://doi.org/10.1016/j.scriptamat.2009.07.028 CrossRefGoogle Scholar
  19. 19.
    Wang J, Hirth JP, Tomé CN (2009) -1012 Twinning nucleation mechanisms in hexagonal close-packed crystals. Acta Mater 57(18):5521–5530.  https://doi.org/10.1016/j.actamat.2009.07.047 CrossRefGoogle Scholar
  20. 20.
    Leclercq L, Capolungo L, Rodney D (2014) Atomic-scale comparison between twin growth mechanisms in magnesium. Mater Res Lett 2(3):152–159.  https://doi.org/10.1080/21663831.2014.880548 CrossRefGoogle Scholar
  21. 21.
    Hirth JP, Wang J, Tomé CN (2016) Disconnections and other defects associated with twin interfaces. Progress Mater Sci 83:417–471.  https://doi.org/10.1016/j.pmatsci.2016.07.003 CrossRefGoogle Scholar
  22. 22.
    Hirth JP, Pond RC (1996) Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater 44(12):4749–4763.  https://doi.org/10.1016/S1359-6454(96)00132-2 CrossRefGoogle Scholar
  23. 23.
    Wang J, Liu L, Tomé CN, Mao S X, Gong S K (2013) Twinning and De-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal–close–packed metals. Mater Res Lett 1(2):81–88.  https://doi.org/10.1080/21663831.2013.779601 CrossRefGoogle Scholar
  24. 24.
    Pond R C, Ma X, Hirth J P, Mitchell T E (2007) Disconnections in simple and complex structures. Philos Mag 87(33):5289–5307.  https://doi.org/10.1080/14786430701651721 CrossRefGoogle Scholar
  25. 25.
    El Kadiri H, Oppedal AL (2010) A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J Mech Phys Solids 58(4):613–624.  https://doi.org/10.1016/j.jmps.2009.12.004 CrossRefGoogle Scholar
  26. 26.
    Serra A, Bacon DJ, Pond RC (1988) The crystallography and core structure of twinning dislocations in HCP metals. Acta Metall 36(12):3183–3203.  https://doi.org/10.1016/0001-6160(88)90054-5 CrossRefGoogle Scholar
  27. 27.
    Aydiner CC, Bernier JV, Clausen B, Lienert U, Tomé CN, Brown DW (2009) Evolution of stress in individual grains and twins in a magnesium alloy aggregate. Phys Rev B 80(2).  https://doi.org/10.1103/PhysRevB.80.024113
  28. 28.
    Lebensohn R A, Tomé C N (1993) A study of the stress state associated with twin nucleation and propagation in anisotropic materials. Philos Mag A 67(1):187–206.  https://doi.org/10.1080/01418619308207151 CrossRefGoogle Scholar
  29. 29.
    Proust G, Tomé CN, Kaschner GC (2007) Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater 55(6):2137–2148.  https://doi.org/10.1016/j.actamat.2006.11.017 CrossRefGoogle Scholar
  30. 30.
    Clausen B, Tomé CN, Brown DW, Agnew SR (2008) Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Mater 56(11):2456–2468.  https://doi.org/10.1016/j.actamat.2008.01.057 CrossRefGoogle Scholar
  31. 31.
    Wang H, Wu PD, Tomé CN, Wang J (2012) Study of lattice strains in magnesium alloy AZ31 based on a large strain elastic–viscoplastic self–consistent polycrystal model. Int J Solids Struct 49 (15–16):2155–2167.  https://doi.org/10.1016/j.ijsolstr.2012.04.026 CrossRefGoogle Scholar
  32. 32.
    Juan P-A, Berbenni S, Barnett MR, Tomé CN, Capolungo L (2014) A double inclusion homogenization scheme for polycrystals with hierarchal topologies: application to twinning in Mg alloys. Int J Plast 60:182–196.  https://doi.org/10.1016/j.ijplas.2014.04.001 CrossRefGoogle Scholar
  33. 33.
    Capolungo L, Marshall PE, McCabe RJ, Beyerlein IJ, Tomé CN (2009) Nucleation and growth of twins in Zr: A statistical study. Acta Mater 57(20):6047–6056.  https://doi.org/10.1016/j.actamat.2009.08.030 CrossRefGoogle Scholar
  34. 34.
    Beyerlein I J, Capolungo L, Marshall PE, McCabe RJ, Tomé CN (2010) Statistical analyses of deformation twinning in magnesium. Philos Mag 90(16):2161–2190.  https://doi.org/10.1080/14786431003630835 CrossRefGoogle Scholar
  35. 35.
    Marshall PE, Proust G, Rogers JT, McCabe RJ (2010) Automatic twin statistics from electron backscattered diffraction data. J Microsc 238(3):218–229.  https://doi.org/10.1111/j.1365-2818.2009.03343.x CrossRefGoogle Scholar
  36. 36.
    Mason TA, Bingert JF, Kaschner GC, Wright SI, Larsen RJ (2002) Advances in deformation twin characterization using electron backscattered diffraction data. Metall Mater Trans A 33:949–954.  https://doi.org/10.1007/s11661-002-0164-8 CrossRefGoogle Scholar
  37. 37.
    Henrie BL, Mason TA, Hansen BL (2004) A semiautomated electron backscatter diffraction technique for extracting reliable twin statistics. Metall Mater Trans A 35:3745–3751.  https://doi.org/10.1007/s11661-004-0280-8 CrossRefGoogle Scholar
  38. 38.
    Henrie BL, Mason TA, Bingert JF (2005) Automated twin identification technique for use with electron backscatter diffraction. Mater Sci Forum 495–497:191–196.  https://doi.org/10.4028/www.scientific.net/MSF.495-497.191 CrossRefGoogle Scholar
  39. 39.
    Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall 41(9):2611–2624.  https://doi.org/10.1016/0956-7151(93)90130-K CrossRefGoogle Scholar
  40. 40.
    Turner PA, Christodoulou N, Tomé CN (1995) Modeling the mechanical response of rolled Zircaloy–2. Int J Plast 11(3):251–265CrossRefGoogle Scholar
  41. 41.
    Juan P A, Pradalier C, Berbenni S, McCabe R J, Tomé CN, Capolungo L (2015) A statistical analysis of the influence of microstructure and twin-twin junctions on nucleation and growth of twins in Zr. Acta Mater 95:399–410.  https://doi.org/10.1016/j.actamat.2015.05.022 CrossRefGoogle Scholar
  42. 42.
    Bunge H-J (1982) Butterworths and Co.Google Scholar
  43. 43.
    Dam EB, Koch M, Lillholm M (1998) Datalogisk Institut Kobenhavns UniversitetGoogle Scholar
  44. 44.
    do Carmo MP (1992) Birkhauser BostonGoogle Scholar
  45. 45.
    Fulkerson B, Vedaldi A, Soatto S (2009) Class segmentation and object localization with superpixel neighborhoods. In: 2009 IEEE 12th International Conference - Computer Vision, pp 670–677.  https://doi.org/10.1109/ICCV.2009.5459175
  46. 46.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-the-art of superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282.  https://doi.org/10.1109/TPAMI.2012.120 CrossRefGoogle Scholar
  47. 47.
    Bondy A, Murty USR (1976) North-HollandGoogle Scholar
  48. 48.
    Burtsev S, Kuzmin YP (1993) An efficient flood-filling algorithm. Comput Graph 17(5):549–561.  https://doi.org/10.1016/0097-8493(93)90006-U CrossRefGoogle Scholar
  49. 49.
    Martin E, Capolungo L, Jiang L, Jonas JJ (2010) Variant selection during secondary twinning in Mg-3% Al. Acta Materialia 58(11):3970–3983.  https://doi.org/10.1016/j.actamat.2010.03.027 CrossRefGoogle Scholar
  50. 50.
    Niezgoda SR, Kanjarla AK, Beyerlein IJ, Tomé CN (2014) Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close–packed metals. Int J Plast 56 (0):119– 138.  https://doi.org/10.1016/j.ijplas.2013.11.005 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Cédric Pradalier
    • 1
    • 4
  • Pierre-Alexandre Juan
    • 2
  • Rodney J. McCabe
    • 3
  • Laurent Capolungo
    • 3
  1. 1.Georgia Tech Lorraine, UMI 2958 GT-CNRSMetzFrance
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.College of ComputingGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations