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Abstract
The present article introduces a new software, Microstructure Evaluation Tool for Interface Statistics (METIS), that performs
high-throughput microstructure statistical analysis from electron backscatter diffraction maps. Emphasis is placed on the
detection of twin domains in hexagonal close-packed metals. The numerical framework on which METIS is built leverages
graph theory, group structures, and associated numerical algorithms to automatically detect twins and unravel both their
intrinsic characteristics features and those pertaining to their interactions. The proposed graphical interface allows for
the detection and correction of unlikely twin/parent associations rendering the approach applicable to highly deformed
microstructures. Twin statistics and microstructural data are classified and saved in a relational database that can be
interrogated via either GUI or SQL requests to reveal a wide spectrum of features of the microstructure. Illustration of the
approach is performed in the case of zirconium.

Keywords EBSD · Twinning · Zirconium · Graph theory

Introduction

Twinning is a prevalent deformation mode in hexagonal
close-packed (h.c.p.) materials [1–6]. From the geometrical
standpoint, the twinning transformation consists of a rota-
tion of the crystal lattice of π radians [7–10] about the nor-
mal to the twinning plane or about the twinning shear direc-
tion. The former operation pertains to type I twins while
the latter applies to type II twins. The twinning process
is decomposed into three steps [11]. First, the twin nucleates
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in areas such as grain boundaries, crack tips, ledges, or
other interface defects where stresses are highly localized
[12–18]. As per atomistic simulations [19], the nucle-
ation process occurs over a small activation volume—
likely in the order of a few nm3. Then, the twin domain
propagates transversely within the grain. Here too, atom-
istic simulations in correlation with transmission electron
microscopy observations have revealed the intricate features
of twin tips and of their transport processes. Among oth-
ers, the role of interfacial steps (e.g., disclination dipoles
[20], twinning disconnections [18, 21–25]) was suggested
to be key. The last step consists of twin thickening: twinning
partial dislocations/disconnections [26] glide along planes
parallel to the twinning plane resulting in twin thickening.
Stress levels required for nucleation and growth of twins
may differ drastically [27, 28].

Understanding the role of twinning on microstruc-
ture evolution and internal stress development entails that
methodologies exist to predict—rather than fit—both nucle-
ation and thickening processes. Such task is particularly
complex as the nm scale at which nucleation occurs is typi-
cally much smaller than that of the material point in which
constitutive models are applied [11, 29–32]. Experimental
observations of twinned microstructures are therefore criti-
cal. In particular, electron backscattering diffraction (here-
after EBSD)—which provides a voxelized mapping of the
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microstructure from the crystallographic orientation of each
point—has historically been used to investigate the correla-
tions between texture, loading conditions, and the activation
of twinning. While pioneering studies [33, 34] allowed for
a relatively limited sampling of twinned microstructure—
as the detection of twin domains was necessarily performed
without use of computational methods—current commer-
cial EBSD softwares automatically extract key features of
deformed microstructure (e.g., grain size). However, due to
the complexity of twinned microstructures, in which sev-
eral distinct and interacting twins belonging to different
twinning modes can be simultaneously found in a given
crystallite [6, 35], commercial solutions cannot yet auto-
matically identify twin domains nor provide descriptive
statistics of their geometry, interactions, etc. In the past
decade, a series authors have [35–38] first developed and
then improved an automated EBSD analysis method capa-
ble of identifying twin and parent phases in materials with
both h.c.p. and orthorhombic crystal symmetry. The appli-
cation of this method to the case of deformed Zr and Mg
[33, 34] has allowed the generation of statistics revealing the
correlations between grain orientation and variant selection,
grain size and twin nucleation, etc. In turn, this data has pro-
vided valuable guidance to modeling developments. Among
others, probabilistic twin nucleation models have been pro-
posed to predict twin variant selection consistently with
experimental observations [33, 34]. This marks a departure
from deterministic approaches [29–32, 39, 40].

The present study proposes a novel approach, Microstruc-
ture Evaluation Tool for Interface Statistics (METIS), to
perform high-throughput statistical analysis of twinned
microstructures. The novel development introduced in what
follows aims at allowing for the analysis of complex maps
in which several twin modes are simultaneously active and
in which twin-twin interactions are statistically relevant. In
these complex scenarios, the use of a deterministic algo-
rithm to detect twin domains and group them may lead to
false identification. The idea proposed here is to develop a
graphical user interface allowing for the assessment of the
quality of the twin detection—and if necessary for its cor-
rection. The study is structured as follows. Section “Euler
Angles, Quaternion Rotation Representations, and Their
Application to EBSD Data” recalls the notations and con-
ventions used to quantify disorientations between voxels
and groups of voxels. Section “Identification of Grains,
Parent, and Twin Phases” presents the details of the algo-
rithm used to detect twins. In particular here, it is shown
that the use of well-established algorithms applying con-
cepts anchored in group theory can successfully lead to the
identification of twin domains. Section “Examples of Auto-
matically Extracted Metrics and Statistics” demonstrates
some of the most important features of the code. The case
of deformed Zr is selected for this application. An example

of the use of METIS can be found in the statistical study of
the influence of microstructure and twin-twin junctions on
twin nucleation and twin growth in Zr [41].

Euler Angles, Quaternion Rotation
Representations, and Their Application
to EBSD Data

Euler Angles and Quaternion Orientation
and Rotation Representations

An EBSD map can be seen as an image, e.g., a square
or hexagonal array of measurement points (Fig. 2), where
each measurement point (or pixel) gives the crystal local
orientation as a set of Euler angles following the Z-
X-Z convention (Bunge [42]), denoted by (φ1, �, φ2).
Crystal orientation can be obtained by applying a rotation
matrix, denoting R to the basic crystal structure. From
a transformation perspective, the matrix R, also more
explicitly denoted by Rw

c , corresponds to the transformation
from the frame attached to the crystal to the world frame,
also referred to as the sample frame. Conversely, the
transformation from the world to the crystal will be denoted
by Rc

w.
In materials science, use of often made of alternative

means to represent rotations. Among others, both Rodrigues
vector and unit quaternions are widely used. For the sake
of understanding, recall that the Rodrigues vector has a
length proportional to the amplitude of a given rotation and
a direction representing the axis around which the rotation
is applied. Similarly, quaternions allow for a compact
representation of a rotation of angle θ around an axis v with
four values (w, x, y, z) where w = cos θ

2 and (x, y, z) =
v · sin θ

2 . By analogy with complex numbers, w is called the
real part of the quaternion and v the imaginary part. When
working with rotations, unit quaternions are preferred, i.e.,√

w2 + x2 + y2 + z2 = 1. The advantage of quaternions
lies in the existence of a multiplication operator allowing
the preservation of the group structure while keeping the
representation compact [43].

In formal terms coming from differential geometry,
extracting the Rodrigues representation from a quaternion or
a rotation matrix is referred to as using the logarithmic map
of the differential manifold [44]. Recovering the quaternion
from the Rodrigues representation is the exponential map.
Therefore, the relationship between a given Rodrigues
vector, u, and its equivalent quaternion, q, can be written as
follows:

u = log q and q = exp u (1)

With this, the amplitude of the rotation q, denoted by
θ , can be expressed as the norm of log q: θ = ‖log q‖.
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The 3D rotation group, usually denoted as SO(3), is not
a vector space. As a consequence, the usual norm of the
Euclidean space R

3 , i.e.,
√

x2 + y2 + z2, does not apply.
A more appropriate norm consists in the amplitude of the
rotation, θ . Therefore, the norm of a rotation represented by
its quaternion q is defined as

‖q‖so = ‖ log q‖ (2)

Although the norm of a rotation is not directly used for
EBSD map analysis, the resulting distance leads to a unified
definition of disorientation. Therefore, the distance between
two rotations represented by q1 and q2 is denoted by:

d(q1, q2) =
∥∥∥log

(
q−1
1 · q2

)∥∥∥ = ‖q−1
1 · q2‖so

(3)

Application to EBSD Data

The automated identification of twin domains relies on the
computation of disorientation between voxels, groups of
voxels, etc. Consider the case of two measurement points,
represented by their respective quaternions q1 = q

c1
w and

q2 = q
c2
w . The actual disorientation between these points

consists of the rotation that needs to be applied to q1 to
transform it into q2.

δ(q1, q2) = q2 · q−1
1 = qc2

w · (
qc1
w

)−1 = qc2
w · qw

c1
= qc2

c1
(4)

With this notation, one notes that δ includes both the
amplitude and the axis of the rotation. The latter property
will be particularly useful to recognize and identify the
mode and system of twins. Further, taking advantage
of quaternion properties, the smallest positive rotation
transforming q1 into q2 is identified and assigned to
δ(q1, q2). For example, if the real part of δ(q1, q2) is
negative, it implies that | θ

2 | > π
2 radians. In this case,

δ(q1, q2) is then replaced by −δ(q1, q2) which corresponds
to a rotation around the same axis but with an angle
equal to θ + π radians. With this, the disorientation angle
is smaller than π radians in absolute value. In addition,
the disorientation can be assumed to be positive since a
quaternion representing a rotation of an angle θ around
a vector v is equal to the quaternion corresponding to a
rotation of an angle −θ around −v.

Further, the disorientation measure, δ, must consider
crystal symmetries. The hexagonal crystallographic struc-
ture is invariant by rotations around the c-axis by k ∗ π

3 ,
, and by π radians around any vector lying in the

basal plane. Quaternions associated with symmetries around
the c-axis and vectors lying in the basal plane are denoted by
qx(k) and qz(k), respectively, and are expressed as follows:

qx(k) = exp (kπ �x) (5)

qz(k) = exp
(
k
π

3
�z
)

(6)

The set of possible disorientations between q1 and q2,
denoted by �(q1, q2), is then defined as

�(q1, q2) = {qz(j) · qx(i) · δ(q1, q2)}i=0...1,j=0...5 (7)

In the case of h.c.p. materials, �(q1, q2) contains 12
elements. The definition of the disorientation quaternion,
Diso(q1, q2), and its norm, ‖Diso(q1, q2)‖so, results
from the definition of �(q1, q2). Their expressions are
respectively

Diso(q1, q2) = arg min
q∈�(q1,q2)

‖q‖so (8)

‖Diso(q1, q2)‖so = min
q∈�(q1,q2)

‖q‖so (9)

The symmetry around any vector lying in the basal plane
allows the disorientation with an angle θ greater than π/2
radian to be equivalent to a disorientation with an angle
equal to θ − π , smaller in magnitude. If θ − π is negative,
the negative sign is removed by considering the rotation of
−(θ − π) around the opposite rotation vector. Symmetries
also imply that the norm of the disorientation quaternion,
‖Diso(q1, q2)‖so, is always in the range of 0 to π/2
radians. Note that for the analysis of other crystallographic
structures, the user has to change the unit cell characteristics
and modify the symmetry quaternions.

Classification of Twinning Relationships

As per seminal work [1, 7, 10], in h.c.p metals, a twin
system is rigorously defined by the indices of its twinning
plane,K1, and of vector η2 lying on a second invariant plane
K2. Alternatively and depending on the twinning mode, the
second invariant plane and the twinning shear direction, η1,
are used. Planes K1 and K2 and vectors η1 and η2 are all
invariant to the twin transformation. When both K1 and η2
are rational, the twin mode is said to be of the first kind
while a twin with rational indices for K2 and η1 is said
to be of the second kind. The lattice reorientation induced
by first and second kind twins respectively correspond to
a rotation by 180◦ about either the normal to K1 or to the
twinning shear direction. In the case of compound twins,
both of these rotations are equivalent. For the sake of
generality, the following four twin modes are considered:
{101̄2} tensile twinning or T1, {112̄1} tensile twinning
or T2, {112̄2} compressive twinning or C1, and {101̄1}
compressive twinning or C2. Figure 1 shows a graphical
representation of one of the six possible twin systems that
can be activated for the four abovementioned twinning
modes. All these twin modes are compound twins; their
activation is material dependent. For example, T1, T2, and
C1 have been shown to be active in high-purity clock-rolled
Zr samples subjected to loading along the through-thickness
and in-plane directions at 76 K [4, 41]. In magnesium, only
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Fig. 1 Schematic representation of twinning modes observed in Mg and Zr (T2 and C1 only appear in Zr). Twins are represented via their twinning
planes, K1

T1 and C2 are susceptible to nucleate and grow. Table 1
details the crystallography of all twin modes cited in the
above.

With these definitions and accounting for the hexagonal
structure considered here, disorientation quaternions can be
indexed by k, such that k ∈ [1, 6]. These are written as
follows:

q(k) = exp
[
π · �η(k)

]
(10)

with

�η(k) =
⎡

⎣
cos [α(k)] cos [β]
sin [α(k)] cos [β]
sin [β]

⎤

⎦ (11)

where α denotes the angle between the first vector of the
primitive hexagonal unit cell �a1 and the vector �ps defined as
the orthogonal projection on the basal plane of an upward
pointing vector parallel to the twinning shear direction η1.
The angle β corresponds to the angle formed by the vector
�ps and the twinning shear direction η1. Note that the vector
�ps and the orthogonal projection on the basal plane of
the twinning shear direction η1 are identical when dealing
with tensile twinning modes while they are opposite in the
case of compressive twinning. The values of both α and β

associated with the six variants of each twinning mode are
listed below:

– α(k) = (k−1)π
3 − 5π

6 and β = arctan
(

γ√
3

)
for tensile 1

Table 1 Twinning modes in Zr

Twinning mode Twinning plane, K1 Twinning direction, η1

T1 {101̄2} <1̄011>

T2 {112̄1} < 1̄1̄26>

C1 {112̄2} <112̄3̄>

C2 {101̄1} <101̄2̄>

– α(k) = (k−3)π
3 and β = arctan 2γ for tensile 2

– α(k) = kπ
3 and β = π + arctan γ for compressive 1

– α(k) = (k−1)π
3 + π

6 and β = π + arctan
(
2γ√
3

)
for

compressive 2

With these definitions, identifying a given twin mode
and system consists in finding the closest object to the
disorientation q

c2
c1 existing between the parent and twin

phases in T , defined as the set of possible twinning
relationships, within a given threshold dmax:

τ =arg min
t∈T

δ
(
qc2
c1

, t
)
such that

∥∥δ
(
qc2
c1

, t
)∥∥

so
<dmax (12)

The set T contains 24 and 12 elements in the case of Zr
and Mg, respectively.

Identification of Grains, Parent, and Twin
Phases

In EBSD scans, non-twinned grains, parent, and twin
phases are contiguous areas with a consistent orientation.
Therefore, detecting grains and twins consists of identifying
and grouping contiguous and consistent areas. These
operations will be performed following a technique similar
to the “super-pixels” technique [45, 46] based on graph
theory and commonly used in image analysis. The whole
process of twin recognition, parent phase identification, etc,
relies on one tool of graph theory, that is used five times
at different levels, which is the extraction of connected
parts. Depending on the graph considered, connected parts
can correspond to grains, twins, or parent phases, etc. The
extraction of connected parts is a well-known problem in
graph theory for which efficient algorithms already exist
[47] and for which the numerical complexity increases
linearly with the number of vertices belonging to the graph.
In other words, the software identifies grains, twins, and
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parent phases by generating five different graphs built on
top of each other. Thus, the first graph aims at grouping
all measurement points with consistent/similar orientation.
The newly formed groups can either be non-twinned grains
or twin and parent phases in the case of twinned grains.
The second graph is used to identify grains. The third and
fourth graphs enable the recognition of parent phases and
the detection of higher order twins, respectively. Finally, a
fifth graph is built in order to group parts of a same twin into
what will be referred to as a twin strip. The notions of graph,
vertex, edge, and connected part mentioned in the above are
introduced in the following paragraph.

For the sake of demonstration, in what follows all
maps, or portions thereof, correspond to experimental data
from previous work by Kaschner et al. [4] on high-purity
clock-rolled Zr samples loaded in compression along the
through-thickness and one of the in-plane directions.

Segmentation of the EBSDMap into Fragments
of Consistent Orientations

The first step in the EBSD analysis consists of grouping all
measurement points of similar orientation in order to form a
first graph of connected fragments. Remember that, in graph
theory, a graph G is a pair of set V,E of vertices and edges.
Two vertices are said connected when an edge links them.
Vertices are usually designated by integers. It implies that
the edge (i, j) connects vertex i to vertex j . A path between
two vertices k and l corresponds to a sequence of edges
and vertices allowing to reach k from l, and reciprocally.
In the present case, edges and paths are undirected which
means that if vertex i is connected by an edge or a path
to vertex j, then j is also connected to i. In addition, a
subset W ⊂ V is a connected part of G if, for all pairs of
vertices (i, j), i ∈ W , j ∈ W , there exists a path in G
between i and j . In the present case, every measurement
point is considered as a vertex, and an edge between two

neighboring pixels is created if the disorientation between
them is smaller than a given threshold. This threshold was
set at 5◦, angle value that corresponded to the level of
precision of the EBSD measurements used to support the
development of the present software. Future users will have
the possibility to choose different values. In addition, the
type of measurement grid, i.e., square or hexagonal (Fig. 2),
does affect the construction of the graph but does not affect
the extraction of connected parts. In the graphical user
interface, we display the disorientation via the thickness
of edges, by making them directly proportional to the
following weight:

w(q1, q2) = e

(
diso(q1,q2)

L

)2

(13)

where L is a threshold value. As a result, the smaller the
disorientation between two pixels, the more strongly is
displayed their mutual edge (Fig. 3). The edge color indi-
cates the nature of the disorientation. For example, an
edge between two points of similar orientation appears in
white. But, as shown in Fig. 4, disorientations correspond-
ing to tensile 1 and compressive 1 twinning relationships are
displayed in green and red, respectively.

In some cases, small groups of measurement points (e.g.,
three pixels or less) exhibit a too low resolution for the
software to identify the fragment they belong to. These
measurement points are then flagged as invalid pixels.
However, a flood-filling algorithm was implemented to
associate these points with the closest connected fragment
[48].

Grouping of Connected Fragments into Grains

The second step in the analysis of EBSD data is to group
connected fragments of consistent orientation into grains. In
a material free of twins or precipitates, this step is trivial
since every connected fragment corresponds to a grain.

Fig. 2 Example of neighboring
relationships encountered in
EBSD data. On the left (a),
when measurement points are
taken on a square grid, the pixel
represented by the black disc
has four neighbors represented
by the white circles. On the right
(b), when measurement points
are taken on an hexagonal grid,
each measurement has six
neighbors

B

C

A

D

A

B

C

D

E

F
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Fig. 3 Graph grouping measurement points of consistent orientation
in fragments. The colored circles correspond to EBSD measurement
points, with the Euler angles mapped on the RGB cube, and the white
lines are edges, whose thickness is proportional to the weight, w.
Measurement points located along fragment borders are displayed in
brown. Consequently, twins appear as areas delineated by a black
border where the edge weight, w, becomes negligible

However, when twinning occurs, different configurations
have to be considered. Figure 5 depicts the three most
typical twinning configurations observed in Zr scans.
Therefore, a second graph, referred to as the twinning graph,
is generated at the level of connected fragments to group

Fig. 4 Graph grouping measurement points of consistent orientation
in fragments with added twinning mode. Green and red edges linking
border points, displayed in brown, indicate tensile and compressive
twinning relations, respectively

them into grains. Vertices are now connected fragments
and edges link two neighboring fragments for which the
disorientation can be classified as a twinning relation.

The construction of such a graph relies on the measure
of disorientation between two fragments of consistent
orientation, i.e., connected parts, obtained after computing
the average orientation of each fragment. Other hypotheses
have also been considered such as the disorientation
between the two centroids or the disorientation along the
fragment boundary. Although these two methods would
have been computationally less expensive, they present
issues that overcome their benefits. First, the centroid might
coincide with a bad measurement point or might be located
outside of the fragment if the latter is non-convex. Second,
the orientation angles obtained by EBSD for measurement
points located near or along twin and grain boundaries are
the least reliable. This explains why the choice has been
made to use the average fragment orientation.

In addition, because SO(3) is not a Euclidian space,
the closed-form expression of the average is incorrect.
Consequently, a specific algorithm, similar to the one
computing average of quaternions, is used to determine
the average orientation of connected EBSD measurements.
Consider a set of n EBSD measurement points represented
as quaternions qi , i = 1..n. Assume that the initial average,
m0, is equal to q1, i.e., m0 = q1. The average orientation
of a fragment is estimated iteratively by computing the
following two equations:

ek = 1

n

n∑

i=1

logDiso(mk, qi) (14)

mk+1 = mk · exp ek (15)

The iteration stops when ‖ek‖ reaches a given threshold
(5× 10−4 in the present case). At this step, mk corresponds
to the best estimate of the fragment orientation.

Using the fragment orientation, it is now possible to build
the twinning graph. The construction of this second graph
and the extraction of its connected components enable the
extraction of a significant amount of properties such as twin
modes, twin systems, twin boundary lengths, the list of
neighbors for each grain, and the list of pixels belonging to
grain joints.

Identification of Parent Phases

In twinned grains, parent phases are composed of one or
several connected fragments, as shown in Fig. 5. Parent
phases are then considered as sets of connected fragments of
consistent orientation (i.e., the disorientation between two
pixels belonging to these connected fragments is smaller
than a given threshold, by default equal to 5◦). To build
such sets, the software generates a third graph over the
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P2

P1

T

P T

T

Fig. 5 Three sample cases of twinning: on the left, a single twin T in the middle of its parent P; in the middle, a twin going across its parent and
separating it into two fragments P1 and P2; on the right, a grain appearing as two fragments next to each other

EBSD map. Vertices are fragments and edges only link
two fragments if they belong to the same grain and if they
have a low respective disorientation. By construction, a
connected component of this graph is a set of fragments
embedded in the same grain with consistent orientation (i.e.,
the disorientation between two pixels belonging to these
fragments is smaller than a given threshold). As mentioned
earlier, the threshold used here is equal to 5◦. By default,
the parent phase is identified as the connected component
of fragments occupying the largest part of the grain. In
other words, the parent is the largest area with a consistent
orientation.

In the graphical user interface, the user can intervene
at this stage by disabling unlikely links between fragment
or even by forcing the identification of the parent when a
twin occupies a larger area than the actual parent phase.
Such a feature can also be used to separate two neighboring
grains whose disorientation randomly matches a twinning
relation. Figures 6 and 7 show two parts of EBSD maps

before and after edition of incorrect twinning relationships,
respectively. Note that, as shown in Fig. 8, the software is
capable of recovering complex grain structures.

Detection of Higher Order Twins

A higher order twin is defined as a twin embedded
in another. For example, a secondary or tertiary twin
corresponds to twins that nucleated in a primary and
secondary twin, respectively. Depending on the material,
the loading path and loading history, secondary twinning
may occur. For example, it has been observed by Martin et
al. [49] in Mg and appears on scans of Zr samples loaded
along the through-thickness direction [4]. Tertiary twinning
is more unlikely and statistically irrelevant. However, the
software is still capable of identifying tertiary and higher
order twins if necessary. The identification of these twins
relies on the graph of connected fragments used to build the
grains. In this graph, a twin of order n has an edge (i.e., an

Fig. 6 Automatic output for a Zr EBSD map. The sample comes from
a high-purity clock-rolled Zr plate loaded in compression along one of
the in-plane directions up to 5% strain [41]. Yellow borders mark the

grain boundaries and brown borders the twin boundaries. Green edges
represent tensile 1 relations, magenta tensile 2, red compressive 1, and
blue compressive 2
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Fig. 7 Same map as Fig. 6, but with manual edition of four incorrect links. The disabled links are displayed as thin edges and highlighted with
red arrows

identifiable twinning relation) with a (n − 1)th-order twin
or parent (n − 1 = 0), but no identifiable relation with
(n − k)th-order twins, with k > 1. An example of such a
situation is seen in Fig. 9 where the orange secondary twin
(marked with a blue dot in its center) is embedded in the
gray twin (marked by a yellow dot). Although the orange

twin shares a border with the parent phase, its disorientation
with respect to the parent domain does not correspond to
one of the previously detailed twinning relations.

The present definition of twinning order leads to a
simple recursive implementation of higher order twins. The
initialization step consists of considering that all parent

Fig. 8 Zoom on the map of Fig. 6 to illustrate complex grain structures recovered by METIS. The dashed line is a disorientation relation that
matches a known relation (compressive 1) but is identified as irrelevant to the twinning process
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Fig. 9 Example of secondary and ternary twinning observed in an
EBSD map of a high-purity clock-rolled Zr sample loaded in com-
pression along the through-thickness direction up to 3% strain. This is
shown using three different visualization modes (see Appendix 1): raw

mode (a), twinning editor mode (b), and twinning statistics mode (c).
The contour of the parent grain is delineated by a yellow line while
the contour of first order twins appears in cyan, the one of secondary
twins in blue and the one of ternary or higher order twins in red

fragments previously identified are of twinning order 0.
To find nth order twins, all nodes, i.e., fragments, with
a twinning order strictly lower than n are removed as
well as all edges with one extremity corresponding to
one of these nodes. The connected components of the
resulting graph are twins of order n. If such a connected
component contains several fragments, these fragments can
be separated in groups of consistent orientation and identify
the “parent” phase, i.e., nth-order twin itself, as the largest
one. All fragments not identified as the “parent” fragment
correspond to twins of order greater than n. The result of
this process applied to the case of secondary and ternary
twinning is shown in Fig. 9 where the gray first-order twin
(highlighted in cyan) has four secondary twins (in blue),
one of which having a ternary twin (in red). Obviously,
this segmentation could be argued against and one could
consider that what considered to be first-order twin is
actually another grain. Unfortunately, no quantitative way to
make this decision can be derived in such a case.

The indirect benefit of detecting and tagging higher
order twins lies in the fact that, because of their decreasing
likelihood, they help the user to check the software results
more rapidly.

The Particular Case of “Twin Strips”

In a not insignificant number of cases, small twins appear
as a strip of connected twins at the outcome of the previous
algorithm. This phenomenon occurs either when a very
thin twin is separated in small objects because of the low
resolution of a few EBSD measurement points or when a
twin is divided into two parts by another twin. However,
it is statistically relevant to count these connected twins,
also called “twin strips,” as single twins. Their number

may differ drastically from one scan to another because it
depends on many factors such that the resolution quality, the
material tested, and the amount of twinning observed.

Two connected components are considered to belong to
the same twin or twin strip if they meet the following five
conditions:

(i) They are in the same grain.
(ii) They have the same orientation, or the disorientation

between the average orientation of both components
is small. Typically, the same threshold is used as the
one used to build connected components.

(iii) The twin’s ellipse main orientations (see “Twin Shape
and Ellipsicity”) are similar, for instance, less than 5◦
apart. Note that this value should be chosen in such a
way that it enables the differentiation of all the twin
variants.

(iv) The sum of the twin half-lengths is within 20% of the
distance between their centroid.

(v) The vector linking their centroid diverges by less than
a few degrees from the twin’s ellipse main orientation.

From these conditions, a fifth graph is generated in all grains.
Vertices are connected components and edges link pairs of
connected components fulfilling the previous five condi-
tions. Consequently, the connected components with more
than one vertex are twin strips. Figure 10 gives an example
of the type of reconstruction obtained with this approach.

Examples of Automatically ExtractedMetrics
and Statistics

The identification of twins as well as the computation
of statistics pertaining to twinning [41] rely on metrics.
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Fig. 10 Zoomed in EBSD map of a high-purity clock-rolled Zr sample loaded in compression along one of the in-plane directions up to 10%
strain. a detected component with their ellipses and twin-strip links in magenta. b reconstructed complete twin

The choice of these metrics and statistics was motivated
by the need of a rigorous identification of twins (see
sections about convexity and twin shape) but also by their
known applications [33, 34, 50]. The rest of the present
paragraph is dedicated to the listing and the description
of some of the original software’s features. These features
were aimed at ensuring the correct identification of twins
and easing the extraction of statistics and microstructural
data via SQL requests and other post-processing codes
[41]. Note that since their implementation, many other
capabilities have been added to the software such as
the systematic characterization of the different twin-twin
junctions, secondary twins, triple junctions (Fig. 11), etc.
Regarding the twin-twin junctions, the software is now able

to identify all types of twin-twin junction variants, count
them, output the average disorientation angle as well as the
standard deviation for any twin-twin junction variant.

Area and Perimeter

The area of connected fragments, i.e., grains, twins, and parent
phases, is obtained by multiplying the number of measure-
ment points with the area corresponding to a single pixel.
The area associated with a measurement point depends on
the step size and the grid type (hexagonal or square).

Grain and twin boundary lengths are computed differ-
ently. Depending on the type of measurement grid, the space
between grains can be seen as a sequence of neighboring

Fig. 11 Zoom on an EBSD map
highlighting the detection and
recording of triple junctions,
marked with small green dots
(see the red arrows), between
twins (delineated by brown
contours) in different grains
(delineated by yellow contours).
The sample, made of high-purity
clock-rolled Zr, was loaded in
compression along one of the
in-plane directions up to
10% strain
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triangles or squares. The software builds such a sequence
by recursively exploring the space between grains. Consider
now the case of an hexagonal measurement grid—a similar
discussion applies to a square grid. Along a grain or twin
boundary, the inter-fragment space is made of triangles that
contain at least two measurement points belonging to the
same fragment. When the three measurement points belong
to different fragments, there exists a connection between
either two grain boundaries or between a grain boundary
and a twin boundary. These identified boundary segments
are then grouped into a complete grain or twin perimeter.
The software computes the grain or twin boundary length
as the length of the line that links the center of all the inter-
fragment triangles. The positions of the contact points along
the twin and grain boundaries as well as the position of the
triple junctions are stored in the database.

Grain Boundary Properties

In order to identify grains, parent, and twin phases, the
disorientations between every pair or measurement points
and connected parts are computed. All disorientation values
are stored in a SQL database. Consequently, the user has the
possibility to extract a very large amount of statistics about
grain boundaries such as the distribution of disorientation
angles between pixels located along the boundary, the
distribution of the average disorientation angle between
twin and parent phases, and the average grain boundary
length between two neighboring grains. Dealing with one-
dimensional statistics, the user is free to differentiate data
related to twin boundaries, twinned and/or non-twinned
grain boundaries.

Convexity

Visual observation of EBSD maps suggests that every grain
or twin seems to be more or less convex. The degree of
convexity can be quantified for each item as follows. First,
the convex hull of the object of interest is built by building
the convex hull of all its joint points. The object can be either
a grain or a twin. The convex hull is a convex polygon that
encloses a set of 2D or 3D points. The construction of the
convex hull can be performed in the same time as sorting
the point by abscissa (O(n log n)). Computing the area of
such a polygon is a standard algorithm from computational
geometry. The degree of convexity can then be defined
as the ratio of the area of the object to the area of its
corresponding convex hull. The ratio is expected to be lower
than 1 and the further away from 1 it is, the less convex the
object is.

This measure of convexity was implemented to refine the
grain detection by identifying grains with a low convexity,
trying to break edges in the connected part graph and
recomputing the convexity of the resulting grains. If the
overall convexity is improved, this edge is removed. Tests
showed that this method is really efficient. However, the
current automatic grain extraction method combined with
the graphic user interface is performant enough that we
rarely require the use of this refinement step.

Twin Shape and Ellipsicity

Length and thickness of twins are computed by estimating
the 2D covariance of their constituent EBSD measurement
points. The eigenvectors of the covariance matrix indicate

Fig. 12 EBSD map of a high-purity clock-rolled Zr sample loaded in
compression along one of the in-plane directions up to 10% strain. The
left caption a shows identified twinning relations. The right caption b

displays ellipses fitted to twins. Red ellipses correspond to low ellip-
sicity (below 70%). Low ellipsicity twins correspond here to merged
orthogonal twins
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the main directions of the twin. The apparent twin length
is estimated as being equal to four times the square root
of the largest eigenvalue of its covariance matrix and the
apparent twin thickness is assumed to be equal to four times
the square root of the smallest eigenvalue. The orientation
of the twin main axis is then given by the orientation
of the largest eigenvector of its covariance matrix. Both
the true twin length and thickness can be computed in
post-processing by multiplying them by the cosine of the
angle between the twin plane and the normal to the sample
[34, 35].

Comparing the ellipse area with the actual twin area
computed from the number of measurement points con-
tained in the twin allows to estimate the ellipsicity of a twin,
defined as its departure from an idealized ellipse. Figure 12
depicts these ellipses and illustrates how the ellipsicity cri-
terion highlights what the software identifies as “merged”
twins. These “merged” twins are very likely co-zonal ten-
sile 1 twin variants. The non-distinction between co-zonal
tensile 1 variants can be explained by the combination of
three factors. First, the theoretical disorientation between
co-zonal tensile 1 variants is equal to 9.6◦. Second, the soft-
ware uses a 5◦ tolerance for twin variant recognition. Third,
the level of precision inherent to EBSD measurements has
to be considered and justifies the use of the 5◦ tolerance by
the software. Consequently, reducing the software tolerance
for twin recognition would not necessarily lead to a more
accurate identification of two co-zonal intersecting twins
but more likely to a higher number of unrecognized twins.

Conclusion

The present article introduces a new software for EBSDmap
automated analysis based on graph theory and quaternion
algebra (METIS). Quaternions allow an easy computation
of disorientations between pixels and areas of similar
orientation. The subsequent use of graph and group
structures allow grain identification, twin recognition, and
statistics extraction.

The newly introduced software distinguishes from pre-
existing commercial softwares or academic codes by
combining visualization with automated analysis of the
EBSD map. The built-in graphic user interface enables an
immediate and direct access to microstructural and twinning
data such as orientation and size of twins and grains and
mode and system of twins but also allows the user to correct
or complete, if necessary, the analysis performed by the
software. In addition, all raw and processed data are saved
in a relational database. Consequently, all experimental
parameters, microstructural data, and twinning statistics are
easily accessible via SQL requests. The database enables
the systematic quantification of the influence of a very

large number of parameters. The construction of such a
database makes a significant difference compared to other
pre-existing analysis tools.

Moreover, although initially developed to perform
statistical analyses on Mg and Zr [41] scans, the software
is not limited to these two h.c.p. metals. Its algorithm is
capable of identifying any twin occurring in h.c.p. materials
on condition that the user writes in the code the value of
the c/a ratio and the theoretical disorientation quaternions
corresponding to all potentially active twinning systems. For
the analysis of other crystallographic structures, the user has
to adapt the cell characteristics and modify the symmetry
quaternions.

To obtain the software, please contact Dr. Laurent
Capolungo (corresponding author).

Acknowledgements The authors thank C.N. Tomé for the many useful
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Appendix 1: Graphical User Interface

In addition to providing a quick and direct access to
a large choice of metrics and statistics displayed on an
EBSD map, the graphic user interface is also aimed at
allowing the user to check and correct, if necessary, software
results. Three types of situation require the intervention
of the user. First, because of the random distribution of
disorientations between neighboring grains, it is statistically
likely that, for a few grains per map, the disorientation
between adjacent grains matches a twinning relation. The
user has the choice between either using the convexity
option to refine the analysis performed by the map or simply
deactivating manually the edge linking the parent to the
mistaken twin. Secondly, in highly strained sample scans,
we have observed that because of orientation gradients, the
disorientation between two connected parts is sometimes
above the threshold to be flagged as a twinning relation. The
user can manually activate this twinning relation. Lastly, the
parent is by default the largest connected component of the
grain. However, twin phases may occupy the largest part of
the grain and appear as the parent phase. Once again, this
can be corrected manually by the user. The result of such
manual editions can be seen by comparing Figs. 6 and 7.

To assist the EBSD map analysis, nine distinct visualiza-
tion modes and eight color mappings of the EBSD data are
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provided. The color mappings correspond to two different
color mappings of the rotation space, three different stereo-
graphic projections, and displayed in gray levels, the image
quality, confidence index, and fitness value reported by the
acquisition software.

The nine visualization modes are the following:

1. Raw mode: displays the raw EBSDmeasurement points
as shown in Fig. 9, left.

2. Twinning editor: displays twinning relations between
fragments and allows the user to enable or disable them.
Fragments identified as parent phases, first, second,
third, and higher generation twins are marked with
yellow, light blue, dark blue, and red discs, respectively.
Discs indicating high-order twins, i.e., second, third,
and higher order, appear larger in order to be more
visible. Likely being the result of incorrectly enabled
relations, these twinning relations have to be inspected
in priority (see Fig. 9, center).

3. Grain neighbors: display grains with their neighbors.
The user, here, is able to mark a fragment as parent or
twin phase.

4. Clusters: display phases grouped by twinning order.
Colors used to indicate twinning modes are also the
same as those used in the twinning editor visualization
mode. However, it emphasizes twinning order. For
example, it was previously mentioned that first-
generation twins are marked with a light blue disc in the
twinning editor mode. Here, first-generation twins are
not only marked by a light blue disc but their boundaries
appear in light blue (see Fig. 9, right).

5. Twinning statistics: exactly like the twinning editor
mode except that only intra-grain relations are dis-
played. The interest of this mode lies in the possibility
for the user to obtain statistics about twinning relations
such as twinning mode, twin system activated, and dis-
orientation quaternion by clicking on the edge linking
the two connected parts.

6. Convex hulls: display the convex hull of detected
grains. The polygons are drawn in green if their area is
close to the enclosed grain area, in red otherwise.

7. Ellipses: display a fitted ellipse around every detected
twins. Twins whose shape does not fit an ellipse very
well are drawn in red because they are likely to be
the result of the merging of two (or more) twins (see
Fig. 10, left). Note that when this situation happens,
merging twins belong to the same mode and system of
twinning. This mode allows the user to have access to
grain and twin properties such as orientation and size.

8. Connected twins: display detected twin-twin junctions.
The user can also mark manually undetected twin-twin
junctions.

9. Twin joints: display identified twinning relations
between measurement points located on twin joints.
Even though measurement points on joints are not very
reliable, this mode might be useful to visualize how
strong the disorientation appears along the boundary.

In addition to these visualization modes, options are
available to highlight grain or twin joints, exclude grains
in contact with the map edge, replace twins in a twin strip
by their union (see Fig. 10, right), display connected part
ids and zoom in or out and pan. When zooming in to
a level where individual measurement can be separated,
local disorientations are also displayed as shown in Fig. 3.
Figure 13 summarizes all available modes.

Appendix 2: Data Availability

The analysis of an EBSD map generates a wealth of
quantitative data about grains, twins, and parent phases.
However, different studies will not use the same EBSD data
for the same purposes. This is why it is really important to
export data in a way that preserves all relations and does
not make assumptions on what should or should not be
stored.

The present software exports the data structure extracted
from the EBSD map analysis inside an SQL database
with the structure described in Fig. 14. In practice, this
is performed using the SQLite library that implements
a server-less database stored inside a single file. The
advantage of such a database is that it keeps all the
information in a single file and allows the user to create
aggregated statistics with simple SQL requests, as shown
hereafter with requests 1 and 2. For example, request
1 generates a table containing features about twins such
as twinning modes (i.e., “twinning”), twin systems (i.e.,
“variant”), apparent twin area (i.e., “area”), apparent twin
thickness (i.e., “thickness”), and quaternions corresponding
to the average twin orientation (i.e., “qx,” “qy,” “qz,” “qw”).
Request 2 was used to extract information about twin-twin
junctions such as the modes and systems of intersecting
twins. This request relies on the view created by request 1
to generate the table containing twin characteristics. Matlab,
C++, or Fortran codes can then process the tables generated
by the SQL requests in order to extract statistics of interest.
For example, statistics about the influence of microstructure
and twin-twin junctions on nucleation and growth of twins
presented by Juan et al. [41] results from the analysis of
only four tables. Moreover, for the sake of keeping record of
experimental conditions, the database also stores constants
and parameters used to construct this particular EBSD
analysis.
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Fig. 13 Visualization modes for a single grain
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(2010) Statistical analyses of deformation twinning in magnesium.
Philos Mag 90(16):2161–2190. https://doi.org/10.1080/14786
431003630835

35. Marshall PE, Proust G, Rogers JT, McCabe RJ (2010) Auto-
matic twin statistics from electron backscattered diffraction
data. J Microsc 238(3):218–229. https://doi.org/10.1111/j.1365-
2818.2009.03343.x

36. Mason TA, Bingert JF, Kaschner GC,Wright SI, Larsen RJ (2002)
Advances in deformation twin characterization using electron
backscattered diffraction data. Metall Mater Trans A 33:949–954.
https://doi.org/10.1007/s11661-002-0164-8

37. Henrie BL, Mason TA, Hansen BL (2004) A semiautomated elec-
tron backscatter diffraction technique for extracting reliable twin
statistics. Metall Mater Trans A 35:3745–3751. https://doi.org/10.
1007/s11661-004-0280-8

38. Henrie BL, Mason TA, Bingert JF (2005) Automated twin iden-
tification technique for use with electron backscatter diffrac-
tion. Mater Sci Forum 495–497:191–196. https://doi.org/10.4028/
www.scientific.net/MSF.495-497.191
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