Skip to main content

Advertisement

Log in

Extraction, separation, and utilization of components contained in waste bamboo by pressurized microwave-assisted ethanol solvent treatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In order to develop the total utilization system that not only cellulose but also lignin contained in waste bamboo (Phyllostachys pubescens) can be converted into useful products, a pressurized microwave-assisted ethanol solvent (PMAES) treatment was examined for the effective extraction of polyphenols with antioxidant activity and the preparation of cellulose nanofiber (CNF). The antioxidant activity of extract was evaluated by measuring the DPPH radical scavenging activity and the reinforcing effect of CNF prepared was examined by measuring the tensile strength of the composite with polylactic acid (PLA). The maximum antioxidant activity, i.e., EC50 = 59.3 μg/mL, of extract was obtained from bamboo treated at 180 °C for 7 min with 50 v/v% ethanol. This value was 0.158 times that of untreated and water-extracted bamboo (the lower the EC50 value, the higher the antioxidant activity) indicating that PMAES treatment was effective for extracting antioxidants. In the same treatment condition, the maximum tensile strength, i.e., 91.8 MPa, of CNF and polylactic acid (PLA) composite with a ratio of 30 wt% CNF was obtained and this value corresponded to 13.9 times that of neat PLA and 2.39 times that of CNF/PLA composite with the same ratio of commercial CNF. PMAES treatment was an effective method for not only the extraction of antioxidants but also the preparation of CNF with a strong reinforcing effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cabrera TA, Bullich ME, Aragüés PM, Gomis BO (2016) Topologies for large scale photovoltaic power plants. Renew Sust Energ Rev 59:309–319. https://doi.org/10.1016/j.rser.2015.12.362

    Article  Google Scholar 

  2. Yilmaz S, Dincer F (2017) Impact of inverter capacity on the performance in large-scale photovoltaic power plants – a case study for Gainesville, Florida. Renew Sust Energ Rev 79:15–23. https://doi.org/10.1016/j.rser.2017.05.054

    Article  Google Scholar 

  3. Kang Z, Zhao Y, Yang D (2020) Review of oil shale in-situ conversion technology. Appl Energy 269:115121. https://doi.org/10.1016/j.apenergy.2020.115121

    Article  Google Scholar 

  4. Cherubini F (2010) The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  Google Scholar 

  5. Takkellapati S, Li T, Gonzalez AM (2018) An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy 20:1615–1630. https://doi.org/10.1007/s10098-018-1568-5

    Article  Google Scholar 

  6. Shinohara Y, Kume T, Ichihashi R, Komatsu H, Otsuki K (2014) Moso-bamboo forests in Japan: what are the effects of their area expansion on ecosystem services? J Jap Forestry Soc 96:351–361. https://doi.org/10.4005/jjfs.96.351

    Article  Google Scholar 

  7. Fukushima K, Usui N, Ogawa R, Tokuchi N (2014) Impacts of moso bamboo (Phyllostachys pubescens) invasion on dry matter and carbon and nitrogen stocks in a broad-leaved secondary forest located in Kyoto, western Japan. Plant Species Biol 30:81–95. https://doi.org/10.1111/1442-1984.12066

    Article  Google Scholar 

  8. Galbe M, Wallberg O (2019) Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels 12:294. https://doi.org/10.1186/s13068-019-1634-1

    Article  Google Scholar 

  9. Peng H, Chen H, Qu Y, Li H, Xu J (2014) Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH. Appl Energy 117:142–148. https://doi.org/10.1016/j.apenergy.2013.12.002

    Article  Google Scholar 

  10. Sorn V, Chang KL, Phitsuwan P, Ratanakhanokchai K, Dong CD (2019) Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresour Technol 293:121929. https://doi.org/10.1016/j.biortech.2019.121929

    Article  Google Scholar 

  11. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609. https://doi.org/10.1007/s13205-015-0279-4

    Article  Google Scholar 

  12. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  13. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48. https://doi.org/10.1023/A:1021070006895

    Article  Google Scholar 

  14. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. https://doi.org/10.1007/s00253-009-1883-1

    Article  Google Scholar 

  15. Zhang Y, Wu X, Ren Y, Fu J, Zhang Y (2004) Safety evaluation of a triterpenoid-rich extract from bamboo shavings. Food Chem Toxicol 42:1867–1875. https://doi.org/10.1016/j.fct.2004.07.005

    Article  Google Scholar 

  16. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    Article  Google Scholar 

  17. Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks polylactide (PLA) production. Polym Degrad Stab 80:403–419. https://doi.org/10.1016/S0141-3910(02)00372-5

    Article  Google Scholar 

  18. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9

    Article  Google Scholar 

  19. Gamez-Meza N, Noriega-Rodriguez J, Medina-Juarez L, Ortega-Garcia J, Cazarez-Casanova R, Angulo-Guerrero O (1999) Antioxidant activity in soybean oil of extracts from Thompson grape bagasse. JAOCS 76:1445–1447. https://doi.org/10.1007/s11746-999-0182-4

    Article  Google Scholar 

  20. Aksoy L, Kolay E, Ağılönü Y, Aslan Z, Kargıoğlu M (2013) Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J Biol Sci 20:235–239. https://doi.org/10.1016/j.sjbs.2013.02.003

    Article  Google Scholar 

  21. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. J Agr Food Chem 40:945–948. https://doi.org/10.1021/jf00018a005

    Article  Google Scholar 

  22. Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130:1036–1043. https://doi.org/10.1016/j.foodchem.2011.07.127

    Article  Google Scholar 

  23. Maisuthisakul P, Suttajit M, Pongsawatmanit R (2007) Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 100:1409–1418. https://doi.org/10.1016/j.foodchem.2005.11.032

    Article  Google Scholar 

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proc 1617:1–16

    Google Scholar 

  25. Suzuki A, Sasaki C, Asada C, Nakamura Y (2018) Production of cellulose nanofibers from Aspen and Bode chopsticks using a high temperature and high pressure steam treatment combined with milling. Carbohydr Polym 194:303–310. https://doi.org/10.1016/j.carbpol.2018.04.047

    Article  Google Scholar 

  26. JIS P8215 (1982) Cellulose in dilute solutions -determination of limiting viscosity number-method in cupri-ethylene-diamine (CED) solution. Japanese Industrial Standards, Tokyo

    Google Scholar 

  27. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644. https://doi.org/10.1021/bm2008907

    Article  Google Scholar 

  28. Noda Y, Asada C, Sasaki C, Nakamura Y (2019) Effects of hydrothermal methods such as steam explosion and microwave irradiation on extraction of water soluble antioxidant materials from garlic husk. Waste Biomass Valori 10:3397–3402. https://doi.org/10.1007/s12649-018-0353-3

    Article  Google Scholar 

  29. Li MF, Sun SN, Xu F, Sun RC (2012) Microwave-assisted organic acid extraction of lignin from bamboo: Structure and antioxidant activity investigation. Food Chem 134:1392–1398. https://doi.org/10.1016/j.foodchem.2012.03.037

    Article  Google Scholar 

  30. Xu F, Sun JX, Sun RC, Fowler P, Baird M (2005) Comparative study of organosolv lignins from wheat straw. Ind Crops and Prod 23:180–193. https://doi.org/10.1016/j.indcrop.2005.05.008

    Article  Google Scholar 

  31. Hallac BB, Pu Y, Ragauskas AJ (2010) Chemical transformations of Buddleja davidii lignin during ethanol organosolv pretreatment. Energy Fuels 24:2723–2732. https://doi.org/10.1021/ef901556u

    Article  Google Scholar 

  32. Tsubaki S, Sakamoto M, Azuma J (2010) Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions. Food Chem 123:1255–1258. https://doi.org/10.1016/j.foodchem.2010.05.088

    Article  Google Scholar 

  33. Pan X, Kadla JF, Ehara K, Gilkes N (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813. https://doi.org/10.1021/jf0605392

    Article  Google Scholar 

  34. Ponomarenko J, Dizhbite T, Lauberts M, Volperts A, Dobele G, Telysheva G (2015) Analytical pyrolysis – a tool for revealing of lignin structure-antioxidant activity relationship. JAAP 113:360–369. https://doi.org/10.1016/j.jaap.2015.02.027

    Article  Google Scholar 

  35. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins-natural antioxidants. Bioresour Technol 95:309–317. https://doi.org/10.1016/j.biortech.2004.02.024

    Article  Google Scholar 

  36. Noda Y, Asada C, Sasaki C, Hashimoto S, Nakamura Y (2013) Extraction method for increasing antioxidant activity of raw garlic using steam explosion. Biochem Eng J 73:1–4. https://doi.org/10.1016/j.bej.2013.01.013

    Article  Google Scholar 

  37. Arauzo PJ, Lucian M, Du L, Olszewski MP, Fiori L, Kruse A (2020) Improving the recovery of phenolic compounds from spent coffee grounds by using hydrothermal delignification coupled with ultrasound assisted extraction. Biomass Bioenergy 139:105616. https://doi.org/10.1016/j.biombioe.2020.105616

    Article  Google Scholar 

  38. Ahmed D, Fatima K, Saeed R (2014) Analysis of phenolic and flavonoid contents, and the anti-oxidative potential and lipid peroxidation inhibitory activity of methanolic extract of Carissa opaca roots and its fractions in different solvents. Antioxidants 3:671–683. https://doi.org/10.3390/antiox3040671

    Article  Google Scholar 

  39. Hu H, Zhang Z, Lei Z, Yang Y, Sugiura N (2009) Comparative study of antioxidant activity and antiproliferative effect of hot water and ethanol extracts from the mushroom Inonotus obliquus. J Biosci Bioeng 107:42–48. https://doi.org/10.1016/j.jbiosc.2008.09.004

    Article  Google Scholar 

  40. Asada C, Suzuki A, Nakamura Y (2021) Antioxidant activity of water extract from bamboo by high-temperature and high-pressure steam treatment. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01413-0

    Article  Google Scholar 

  41. Mu J, Uehara T, Li J, Furuno T (2004) Identification and evaluation of antioxidant activities of bamboo extracts. For Stud China 6:1. https://doi.org/10.1007/s11632-004-0011-7

    Article  Google Scholar 

  42. Saari SK, Ossipov V, Tiitto RJ, Jia J (2008) Phenolics from the culms of five bamboo species in the Tangjiahe and Wolong Giant Panda Reserves, Sichuan, China. Biochem Syst Ecol 36:758–765. https://doi.org/10.1016/j.bse.2008.08.003

    Article  Google Scholar 

  43. Tanaka A, Zhu Q, Tan H, Horiba H, Ohnuki K, Mori Y, Yamauchi R, Ishikawa H, Iwamoto A, Kawahara H, Shimizu K (2014) Biological activities and phytochemical profiles of extracts from different parts of bamboo (Phyllostachys pubescens). Molecules 19:8238–8260. https://doi.org/10.3390/molecules19068238

    Article  Google Scholar 

  44. Vinardell MP, Ugartondo V, Mitjans M (2008) Potential applications of antioxidant lignins from different sources. Ind Crops Prod 27:220–223. https://doi.org/10.1016/j.indcrop.2007.07.011

    Article  Google Scholar 

  45. Asada C, Sasaki C, Suzuki A, Nakamura Y (2018) Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valor 9:2423–2432. https://doi.org/10.1007/s12649-017-0157-x

    Article  Google Scholar 

  46. Fang Z, Li B, Liu Y, Zhu J, Li G, Hou G, Zhou J, Qiu X (2020) Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter 2:1000–1004. https://doi.org/10.1016/j.matt.2020.01.016

    Article  Google Scholar 

  47. Wang X, Jia Y, Liu Z, Miao J (2018) Influence of the lignin content on the properties of poly(lactic acid)/lignin-containing cellulose nanofibrils composite films. Polymers 10(9):1013. https://doi.org/10.3390/polym10091013

    Article  Google Scholar 

  48. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compo Sci Technol 68:2103–2106. https://doi.org/10.1016/j.compscitech.2008.03.006

    Article  Google Scholar 

  49. Li J, Li J, Feng D, Zhao J, Sun J, Li D (2017) Comparative study on properties of polylactic acid nanocomposites with cellulose and chitin nanofibers extracted from different raw materials. J Nanometer 2017:7193263. https://doi.org/10.1155/2017/7193263

    Article  Google Scholar 

  50. Asada C, Seno M, Nakamura Y (2021) Preparation of biopolymer composite using cedar-derived cellulose nanofibers. Waste Biomass Valor. https://doi.org/10.1007/s12649-021-01436-8

    Article  Google Scholar 

Download references

Funding

This study is funded by a Grant-in-Aid for Young Scientists (A) (Grant No. 17H04717) and a Grant-in-Aid for Scientific Research (A) (Grant No. 20H00664) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Asada.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asada, C., Katsura, K., Suzuki, A. et al. Extraction, separation, and utilization of components contained in waste bamboo by pressurized microwave-assisted ethanol solvent treatment. Biomass Conv. Bioref. 13, 8315–8326 (2023). https://doi.org/10.1007/s13399-021-01781-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01781-7

Keywords

Navigation