Skip to main content
Log in

Predicting the excess pressure drop incurred by LPTT fluids in flow through a planar constricted channel

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Laminar flow of a viscoelastic fluid obeying the linear simplified Phan-Thien/Tanner model (LPTT) is numerically studied in a planar channel partially obstructed by a cosinusoidal constriction. Based on published data (Tammadon-Jahromi et al., 2011) there is no excess pressure drop for this particular fluid when flowing through an orifice-plate. Numerical results obtained using OpenFoam software at a typically low Reynolds number suggest that there exists a strong competition between the fluid’s strain-hardening/shear-thinning behavior on the one side with its first normal-stress difference in extension, on the other side, in controlling the pressure drop caused by the presence of the constriction. It is shown that, an excess-pressure-drop (epd) can correctly be predicted provided that use is made of a proper (inelastic) baseline in the definition of the “epd”. At moderate Reynolds numbers a flow-reversal is predicted to occur at the lee side of the constriction ruling out this technique as an extensional rheometer. It is argued that such vortices can be very useful in high-throughput microfluidic systems for mixing enhancement. To reduce the excessive pressure drop experienced by the fluid when working at high Reynolds numbers, it is shown that the Deborah number of the flow should be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguayo, J.P., H.R. Tamaddon-Jahromi, and M.F. Webster, 2008, Excess pressure-drop estimation in contraction and expansion flows for constant shear-viscosity, extension strain-hardening fluids. J. Non-Newton. Fluid Mech. 153, 157–176.

    Article  Google Scholar 

  • Alves, M.A., F.T. Pinho, and P.J. Oliveira, 2001, Study of steady pipe and channel flows of a single-mode Phan-Thien-Tanner fluid. J. Non-Newton. Fluid Mech. 101, 55–76.

    Article  Google Scholar 

  • Anderson, H.I., R. Halden, and T. Glomsaker, 2000, Effects of surface irregularities on flow resistance in differently shaped arterial stenoses. J. Biomech. 33, 1257–1262.

    Article  Google Scholar 

  • Azaiez, J., R. Guénette, and A. Ait-Kadi, 1996, Numerical simulation of viscoelastic flows through a planar contraction. J. Non-Newton. Fluid Mech. 62, 253–277.

    Article  Google Scholar 

  • Binding, D.M., P.M. Phillips, and T.N. Phillips, 2006, Contraction/expansion flows: The pressure drop and related issues. J. Non-Newton. Fluid Mech. 137, 31–38.

    Article  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids Vol. 1: Fluid Mechanics, 2nd ed., John Wiley and Sons Inc., New York.

    Google Scholar 

  • Cheng, R.T.S., 1972, Numerical solution of the Navier-Stokes equations by the finite element method. Phys. Fluids 15, 2098–2105.

    Article  Google Scholar 

  • Cogswell, F.N., 1972, Converging flow of polymer melts in extrusion dies. Polym. Eng. Sci. 12, 64–73.

    Article  Google Scholar 

  • Favero, J.L., A.R. Secchi, N.S.M. Cardozo, and H. Jasak, 2010, Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations, J. Non-Newton. Fluid Mech. 165, 1625–1636.

    Article  Google Scholar 

  • Fernandes, C., V. Vukčević, T. Uroić, R. Simoes, O.S. Carneiro, H. Jasak, and J.M. Nóbrega, 2019, A coupled finite volume flow solver for the solution of incompressible viscoelastic flows. J. Non-Newton. Fluid Mech. 265, 99–115.

    Article  Google Scholar 

  • Giddens, D.P., C.K. Zarins, and S. Glagov, 1993, The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 115, 588–594.

    Article  Google Scholar 

  • Grillet, A.M., A.C.B. Bogaerds, G.W.M. Peters, F.P.T. Baaijens, and M. Bulters, 2002, Numerical analysis of flow mark surface defects in injection molding flow. J. Rheol. 46, 651–669.

    Article  Google Scholar 

  • Harten, A., 1983, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393.

    Article  Google Scholar 

  • James, D.F., 2009, Boger fluids. Annu. Rev. Fluid Mech. 41, 129–142.

    Article  Google Scholar 

  • James, D.F., G.M. Chandler, and S.J. Armor, 1990, A converging channel rheometer for the measurement of extensional viscosity. J. Non-Newton. Fluid Mech. 35, 421–443.

    Article  Google Scholar 

  • Larson, R.G., 1988, Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston.

    Google Scholar 

  • Lee, H.S. and S.J. Muller, 2017, A differential pressure extensional rheometer on a chip with fully developed elongational flow. J. Rheol. 61, 1049–1059.

    Article  Google Scholar 

  • Lee, J.W., D. Kim, and Y. Kwon, 2002, Mathematical characteristics of the pom-pom model. Rheol. Acta 41, 223–231.

    Article  Google Scholar 

  • Lopez-Aguilar J.E., M.F. Webster, H.R. Tamaddon-Jahromi, O. Manero, D.M. Binding, and K. Walters, 2017, On the use of continuous spectrum and discrete-mode differential models to predict contraction-flow pressure drops for Boger fluids, Phys. Fluids 29, 121613.

    Article  Google Scholar 

  • Magda, J.J., J. Lou, S.G. Baek, and K.L. DeVries, 1991, Second normal stress difference of a Boger fluid. Polymer 32, 2000–2009.

    Article  Google Scholar 

  • Mahapatra, T.R., G.C. Layek, and M.K. Maiti, 2002, Unsteady laminar separated flow through constricted channel. Int. J. Non-Linear Mech. 37, 171–186.

    Article  Google Scholar 

  • Marrucci, G., F. Greco, and G. Ianniruberto, 2001, Integral and differential constitutive equations for entangled polymers with simple versions of CCR and force balance on entanglements. Rheol. Acta 40, 98–103.

    Article  Google Scholar 

  • Ngamaramvaranggul, V. and M.F. Webster, 2002, Simulation of pressure-tooling wire-coating flow with Phan-Thien/Tanner models. Int. J. Numer. Methods Fluids 38, 677–710.

    Article  Google Scholar 

  • Nyström, M., H.R. Tamaddon-Jahromi, M. Stading, and M.F. Webster, 2016, Extracting extensional properties through excess pressure drop estimation in axisymmetric contraction and expansion flows for constant shear viscosity, extension strain-hardening fluids. Rheol. Acta 55, 373–396.

    Article  Google Scholar 

  • Ober, T.J., S.J. Haward, C.J. Pipe, J. Soulages, and G.H. McKinley, 2013, Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol. Acta 52, 529–546.

    Article  Google Scholar 

  • Oliveira, P.J. and F.T. Pinho, 1999, Analytical solution for fully developed channel and pipe flow of Phan-Thien-Tanner fluids. J. Fluid Mech. 387, 271–280.

    Article  Google Scholar 

  • Perera, M.G.N. and K. Walters, 1977, Long range memory effects in flows involving abrupt changes in geometry: Part 2: The expansion/contraction/expansion problem. J. Non-Newton. Fluid Mech. 2, 191–204.

    Article  Google Scholar 

  • Perez-Camacho, M., J.E. Lopez-Aguilar, F. Calderas, O. Manero, and M.F. Webster, 2015, Pressure-drop and kinematics of viscoelastic flow through an axisymmetric contraction-expansion geometry with various contraction-ratios. J. Non-Newton. Fluid Mech. 222, 260–271.

    Article  Google Scholar 

  • Peters, G.W.M., J.F.M. Schoonen, F.P.T. Baaijens, and H.E.H. Meijer, 1999, On the performance of enhanced constitutive models for polymer melts in a cross-slot flow. J. Non-Newton. Fluid Mech. 82, 387–427.

    Article  Google Scholar 

  • Phan-Thien, N. and R.I. Tanner, 1977, A new constitutive equation derived from network theory. J. Non-Newton. Fluid Mech. 2, 353–365.

    Article  Google Scholar 

  • Phan-Thien, N., 1978, A nonlinear network viscoelastic model. J. Rheol. 22, 259–283.

    Article  Google Scholar 

  • Pimenta, F. and M.A. Alve, 2017, Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 239, 85–104.

    Article  Google Scholar 

  • Poole, R.J., F.T. Pinho, M.A. Alves, and P.J. Oliveira, 2009, The effect of expansion ratio for creeping expansion flows of UCM fluids. J. Non-Newton. Fluid Mech. 163, 35–44.

    Article  Google Scholar 

  • Rodd, L.E., D. Lee, K.H. Ahn, and J.J. Cooper-White, 2010, The importance of downstream events in microfluidic viscoelastic entry flows: Consequences of increasing the constriction length. J. Non-Newton. Fluid Mech. 165, 1189–1203.

    Article  Google Scholar 

  • Rodd, L.E., T.P. Scott, D.V. Boger, J.J. Cooper-White, and G.H. McKinley, 2005, The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries. J. Non-Newton. Fluid Mech. 129, 1–22.

    Article  Google Scholar 

  • Saramito, P., 1995, Efficient simulation of nonlinear viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 60, 199–223.

    Article  Google Scholar 

  • Sousa, P.C., F.T. Pinho, M.S.N. Oliveira, and M.A. Alves, 2011, Extensional flow of blood analog solutions in microfluidic devices, Biomicrofluidics 5, 014108.

    Article  Google Scholar 

  • Tamaddon-Jahromi, H.R., I.E. Garduno, J.E. Lopez-Aguilar, and M.F. Webster, 2016, Predicting large experimental excess pressure drops for Boger fluids in contraction-expansion flow. J. Non-Newton. Fluid Mech. 230, 43–67.

    Article  Google Scholar 

  • Tamaddon-Jahromi, H.R., M.F. Webster, and P.R. Williams, 2011, Excess pressure drop and drag calculations for strain-hardening fluids with mild shear-thinning: Contraction and falling sphere problems. J. Non-Newton. Fluid Mech. 166, 939–950.

    Article  Google Scholar 

  • Walters, K., H.R. Tamaddon-Jahromi, M.F. Webster, M.F. Tome, and S. McKee, 2009, The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids. Korea-Aust. Rheol. J. 21, 225–233.

    Google Scholar 

  • Wang, J. and D.F. James, 2011, Lubricated extensional flow of viscoelastic fluids in a convergent microchannel. J. Rheol. 55, 1103–1126.

    Article  Google Scholar 

  • Wapperom, P. and R. Keunings, 2000, Simulation of linear polymer melts in transient complex flow. J. Non-Newton. Fluid Mech. 95, 67–83.

    Article  Google Scholar 

  • Wapperom, P. and R. Keunings, 2001, Numerical simulation of branched polymer melts in transient complex flow using pompom models. J. Non-Newton. Fluid Mech. 97, 267–281.

    Article  Google Scholar 

  • White, J.L. and A.B. Metzner, 1963, Development of constitutive equations for polymeric melts and solutions. J. Appl. Polym. Sci. 7, 1867–1889.

    Article  Google Scholar 

  • Xue, S.C., N. Phan-Thien, and R.I. Tanner, 1998, Three dimensional numerical simulations of viscoelastic flows through planar contractions. J. Non-Newton. Fluid Mech. 74, 195–245.

    Article  Google Scholar 

  • Zhang, Y., Y. Zhao, D. Chen, K. Wang, Y. Wei, Y. Xu, C. Huang, J. Wang, and J. Chen, 2019, Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. Analyst 144, 1008–1015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayvan Sadeghy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, T., Esmaeili, M., Bazargan, S. et al. Predicting the excess pressure drop incurred by LPTT fluids in flow through a planar constricted channel. Korea-Aust. Rheol. J. 31, 149–166 (2019). https://doi.org/10.1007/s13367-019-0016-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0016-3

Keywords

Navigation