Skip to main content
Log in

Secondary Dean flow characteristics of inelastic Bird-Carreau fluids in curved microchannels

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

To effectively control the mixing of target materials inside microfluidic devices, the Dean flow features of generalized-Newtonian Bird-Carreau (BC) fluids in curved rectangular channels are theoretically investigated, as a passive technique. Governing equations coupled with the Cauchy momentum equation and the BC model are solved using the finite volume scheme with a semi-implicit method for pressure-linked equations-revised (SIMPLER) algorithm. The effects of the rheological parameters of BC model, such as viscosity ratio, power-law index, and relaxation time constant, on the Dean flow are systematically examined in a wide range of Dean numbers (Dn), (very low to O(102)). The entire flow characteristics of BC fluids in curved microchannels with increasing Dn are quantified using flow skewness, DnRef/DnMES, and magnitude of vorticity, resulting in two main findings of a more outward-skewed streamwise velocity profile and a more enhanced secondary Dean vortex for non-Newtonian fluids in comparison to the Newtonian case at the same Dn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ait-Kadi, A., P.J. Carreau, and G. Chauveteau, 1987, Rheological properties of partially hydrolyzed polyacrylamide solutions, J. Rheol.31, 537–561.

    Article  CAS  Google Scholar 

  • Amini, H., W. Lee, and D. Di Carlo, 2014, Inertial microfluidic physics, Lab Chip14, 2739–2761.

    Article  CAS  Google Scholar 

  • Bayat, P. and P. Rezai, 2017, Semi-empirical estimation of dean flow velocity in curved microchannels, Sci. Rep.7, 13655.

    Article  CAS  Google Scholar 

  • Berger, S.A., L. Talbot, and L.-S. Yao, 1983, Flow in curved pipes, Annu. Rev. Fluid Mech.15, 461–512.

    Article  Google Scholar 

  • Bharti, R.P., R.P. Chhabra, and V. Eswaran, 2006, Steady flow of power law fluids across a circular cylinder, Can. J. Chem. Eng.84, 406–421.

    Article  CAS  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids: Vol. 1. Fluid Mechanics, 2nd eds., John Wiley & Sons, New York.

    Google Scholar 

  • Bossard, F., N. El Kissi, A. D’Aprea, F. Alloin, J.-Y. Sanchez, and A. Dufresne, 2010, Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO, Rheol. Acta49, 529–540.

    Article  CAS  Google Scholar 

  • Chen, H. and J.C. Meiners, 2004, Topologic mixing on a microfluidic chip, Appl. Phys. Lett.84, 2193–2195.

    Article  CAS  Google Scholar 

  • Cheng, K.C., R.-C. Lin, and J.-W. Ou, 1976, Fully developed laminar flow in curved rectangular channels, J. Fluids Eng.98, 41–48.

    Article  Google Scholar 

  • Cherry, E.M. and J.K. Eaton, 2013, Shear thinning effects on blood flow in straight and curved tubes, Phys. Fluids25, 073104.

    Article  CAS  Google Scholar 

  • Chien, S.-K., T.-H. Yen, Y.-T. Yang, and C.-K. Chen, 2008, Lattice Boltzmann method simulation of 3D fluid flow in serpentine, CMES-Comp. Model Eng.29, 163–173.

    Google Scholar 

  • Cho, C.-C., C.-L. Chen, and C.-K. Chen, 2012, Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow, Electrophoresis33, 743–750.

    Article  CAS  Google Scholar 

  • Chun, M.-S. and M.J. Ko, 2012, Rheological correlations of relaxation time for finite concentrated semiflexible polyelectrolytes in solvents, J. Korean Phys. Soc.61, 1108–1113.

    Article  CAS  Google Scholar 

  • Cruz, D.A., P.M. Coelho, and M.A. Alves, 2012, A simplified method for calculating heat transfer coefficients and friction factors in laminar pipe flow of non-Newtonian fluids, J. Heat Transfer134, 091703.

    Article  Google Scholar 

  • Culbertson, C.T., S.C. Jacobson, and J.M. Ramsey, 1998, Dispersion sources for compact geometries on microchips, Anal. Chem.70, 3781–3789.

    Article  CAS  Google Scholar 

  • De Vriend, H.J., 1981, Velocity redistribution in curved rectangular channels, J. Fluid Mech.107, 423–439.

    Article  CAS  Google Scholar 

  • Dean, W.R., 1927, XVI. Note on the motion of fluid in a curved pipe, Philos. Mag.4, 208–223.

    Article  Google Scholar 

  • Di Carlo, D., 2009, Inertial microfluidics, Lab Chip9, 3038–3046.

    Article  CAS  Google Scholar 

  • Ebagninin, K.W., A. Benchabane, and K. Bekkour, 2009, Rheological characterization of poly(ethylene oxide) solutions of different molecular weights, J. Colloid Interface Sci.336, 360–367.

    Article  CAS  Google Scholar 

  • Eustice, J., 1910, Flow of water in curved pipes, Proc. R Soc. London Ser. A84, 107–118.

    Article  Google Scholar 

  • Fan, Y., R.I. Tanner, and N. Phan-Thien, 2001, Fully developed viscous and viscoelastic flows in curved pipes, J. Fluid Mech.440, 327–357.

    Article  CAS  Google Scholar 

  • Guan, G., L. Wu, A.A.S. Bhagat, Z. Li, P.C.Y. Chen, S. Chao, C.J. Ong, and J. Han, 2013, Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation, Sci. Rep.3, 1475.

    Article  CAS  Google Scholar 

  • Howell, P.B. Jr., D.R. Mott, J.P. Golden, and F.S. Ligler, 2004, Design and evaluation of a Dean vortex-based micromixer, Lab Chip4, 663–669.

    Article  CAS  Google Scholar 

  • Hsu, C.-F. and S.V. Patankar, 1982, Analysis of laminar non-Newtonian flow and heat transfer in curved tubes, AIChE J.28, 610–616.

    Article  CAS  Google Scholar 

  • Jarvas, G. and A. Guttman, 2013, Modeling of cell sorting and rare cell capture with microfabricated biodevices, Trends. Biotechnol.31, 696–703.

    Article  CAS  Google Scholar 

  • Jung, H., M.-S. Chun, and M.-S. Chang, 2015, Sorting of human mesenchymal stem cells by applying optimally designed microfluidic chip filtration, Analyst140, 1265–1274.

    Article  CAS  Google Scholar 

  • Koh, C.G., X. Kang, Y. Xie, Z. Fei, J. Guan, B. Yu, X. Zhang, and L.J. Lee, 2009, Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device, Mol. Pharm.6, 1333–1342.

    Article  CAS  Google Scholar 

  • Lepchev, D. and D. Weihs, 2010, Low Reynolds number flow in spiral microchannels, J. Fluids Eng.132, 071202.

    Article  Google Scholar 

  • Martel, J.M. and M. Toner, 2012, Inertial focusing dynamics in spiral microchannels, Phys. Fluids24, 032001.

    Article  CAS  Google Scholar 

  • McGrath, J., M. Jimenez, and H. Bridle, 2014, Deterministic lateral displacement for particle separation: A review, Lab Chip14, 4139–4158.

    Article  CAS  Google Scholar 

  • Nivedita, N., P. Ligrani, and I. Papautsky, 2017, Dean flow dynamics in low-aspect ratio spiral microchannels, Sci. Rep.7, 44072.

    Article  Google Scholar 

  • Ookawara, S., R. Higashi, D. Street, and K. Ogawa, 2004, Feasibility study on concentration of slurry and classification of contained particles by microchannel, Chem. Eng. J.101, 171–178.

    Article  CAS  Google Scholar 

  • Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.

    Google Scholar 

  • Rothert, A., S.K. Deo, L. Millner, L.G. Puckett, M.J. Madou, and S. Daunert, 2005, Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform, Anal. Biochem.342, 11–19.

    Article  CAS  Google Scholar 

  • Rowe, M., 1970, Measurements and computations of flow in pipe bends, J. Fluid Mech.43, 771–783.

    Article  Google Scholar 

  • Shen, S., L. Kou, X. Zhang, D. Wang, Y. Niu, and J. Wang, 2018, Regulating secondary flow in ultra-low aspect ratio microchannels by dimensional confinement, Adv. Theory. Simul.1, 1700034.

    Article  CAS  Google Scholar 

  • Snyder, B. and C. Lovely, 1990, A computational study of developing 2-D laminar flow in curved channels, Phys. Fluids A2, 1808–1816.

    Article  CAS  Google Scholar 

  • Song, H., Z. Cai, H.M. Noh, and D.J. Bennett, 2010, Chaotic mixing in microchannels via low frequency switching transverse electro-osmotic flow generated on integrated microelectrodes, Lab Chip10, 734–740.

    Article  CAS  Google Scholar 

  • Tan, W.-H. and S. Takeuchi, 2007, A trap-and-release integrated microfluidic system for dynamic microarray applications, Proc. Natl Acad. Sci. USA104, 1146–1151.

    Article  CAS  Google Scholar 

  • Thangam, S. and N. Hur, 1990, Laminar secondary flows in curved rectangular ducts, J. Fluid Mech.217, 421–440.

    Article  CAS  Google Scholar 

  • Volpe, A., P. Paiè, A. Ancona, R. Osellame, P.M. Lugarà, and G. Pascazio, 2017, A computational approach to the characterization of a microfluidic device for continuous size-based inertial sorting, J. Phys. D: Appl. Phys.50, 255601.

    Article  CAS  Google Scholar 

  • Wyatt, N.B. and M.W. Liberatore, 2009, Rheology and viscosity scaling of the polyelectrolyte xanthan gum, J. Appl. Polym. Sci.114, 4076–4084.

    Article  CAS  Google Scholar 

  • Yamada, M., M. Nakashima, and M. Seki, 2004, Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel, Anal. Chem.76, 5465–5471.

    Article  CAS  Google Scholar 

  • Yoon, D.H., J.B. Ha, Y.K. Bahk, T. Arakawa, S. Shoji, and J.S. Go, 2009, Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel, Lab Chip9, 87–90.

    Article  CAS  Google Scholar 

  • Yoon, K., H.W. Jung, and M.-S. Chun, 2017, Secondary flow behavior of electrolytic viscous fluids with Bird-Carreau model in curved microchannels, Rheol. Acta56, 915–926.

    Article  CAS  Google Scholar 

  • Yun, J.H., M.-S. Chun, and H.W. Jung, 2010, The geometry effect on steady electrokinetic flows in curved rectangular microchannels, Phys. Fluids22, 052004.

    Article  CAS  Google Scholar 

  • Zhao, C. and C. Yang, 2013, Electrokinetics of non-Newtonian fluids: A review, Adv. Colloid Interface Sci.201–202, 94–108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the KIST Institutional Program (project No. 2E29720 and No. 2E30580) provided to M.-S. Chun and by the National Research Foundation of Korea (NRF) of Korea grant (No. 2016R1A5A1009592 and No. 2017R1E1A1A01075107) provided to H.W. Jung.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Wook Jung or Myung-Suk Chun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, K., Jung, H.W. & Chun, MS. Secondary Dean flow characteristics of inelastic Bird-Carreau fluids in curved microchannels. Korea-Aust. Rheol. J. 32, 61–70 (2020). https://doi.org/10.1007/s13367-020-0007-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-020-0007-4

Keywords

Navigation