Skip to main content
Log in

Enhancing Curcumin Oral Bioavailability Through Nanoformulations

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Curcumin is a promising therapeutic agent that exhibits manifold therapeutic activities. However, it is challenging to study curcumin as it exhibits poor aqueous solubility and low permeability and it is a substrate for P-glycoprotein (P-gp). It is readily metabolized in the body, but many active metabolites of curcumin have been identified that could also be exploited for therapy. Strategies for the oral bioenhancement of curcumin to leverage the potential of curcumin as a therapeutic molecule are discussed here in light of these challenges. A brief discussion of conventional bioenhancement strategies using cyclodextrin complexes, solid dispersions, and solid self-emulsifying drug delivery systems is given. However, the major focus of this review is the application of nano-based approaches to the bioenhancement of curcumin. A description of the main advantages of nanosystems is followed by a detailed review of various nanosystems of curcumin, including nanosuspensions and various carrier-based nanosystems. Each nanosystem considered here is first briefly introduced, and then studies of the nanosystem containing curcumin are discussed. Lipid-based systems including liposomes and solid lipid nanoparticles, microemulsions, self-microemulsifying drug-delivery systems, nanoemulsions, and polymeric nanoparticles—which are widely explored—are dealt with in detail. Other miscellaneous systems discussed include inorganic nanoparticles, micelles, solid nanodispersions, phytosomes, and dendrimers. The possibility of using intact nanoparticles to achieve the targeted oral delivery of curcumin and thus harness the benefits of this wonder nutraceutical is an exciting prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D’Souza AA, Devarajan PV. Bioenhanced oral curcumin nanoparticles: role of carbohydrates. Carbohydr Polym. 2016;136:1251–8. https://doi.org/10.1016/j.carbpol.2015.10.021.

    Article  CAS  PubMed  Google Scholar 

  2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.

    Article  CAS  PubMed  Google Scholar 

  4. Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods. 2017;6(10):92.

    Article  CAS  PubMed Central  Google Scholar 

  5. Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2017;7(3):339–46.

    Article  PubMed  Google Scholar 

  6. Hatcher H, Planalp R, Cho J, Torti F, Torti S. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burgos Moron E, Calderon Montano JM, Salvador J, Robles A, Lopez Lazaro M. The dark side of curcumin. Int J Cancer. 2010;126(7):1771–5. https://doi.org/10.1002/ijc.24967.

    Article  CAS  PubMed  Google Scholar 

  8. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11(4):338–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Purpura M, Lowery RP, Wilson JM, Mannan H, Munch G, Razmovski-Naumovski V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur J Nutr. 2018;57(3):929–38. https://doi.org/10.1007/s00394-016-1376-9.

    Article  CAS  PubMed  Google Scholar 

  10. Shankar TB, Shantha N, Ramesh H, Murthy IA, Murthy VS. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian J Exp Biol. 1980;18(1):73–5.

    CAS  PubMed  Google Scholar 

  11. Qureshi S, Shah A, Ageel A. Toxicity studies on Alpinia galanga and Curcuma longa. Planta Med. 1992;58(02):124–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh C-Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–900.

    PubMed  Google Scholar 

  13. Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):10. https://doi.org/10.1186/1472-6882-6-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14(14):4491–9. https://doi.org/10.1158/1078-0432.CCR-08-0024.

    Article  CAS  PubMed  Google Scholar 

  15. John MK, Xie H, Bell EC, Liang D. Development and pharmacokinetic evaluation of a curcumin co-solvent formulation. Anticancer Res. 2013;33(10):4285–91.

    CAS  PubMed  Google Scholar 

  16. Hu L, Shi Y, Li JH, Gao N, Ji J, Niu F, et al. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech. 2015;16(6):1327–34. https://doi.org/10.1208/s12249-014-0254-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu D, Schwimer J, Liu Z, Woltering EA, Greenway FL. Antiangiogenic effect of curcumin in pure versus in extract forms. Pharm Biol. 2008;46(10–11):677–82.

    Article  CAS  Google Scholar 

  18. Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces. 2014;117:520–7. https://doi.org/10.1016/j.colsurfb.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  20. Hjorth Tønnesen H. Solubility and stability of curcumin in solutions containing alginate and other viscosity modifying macromolecules—studies of curcumin and curcuminoids. Die Pharmazie. 2006;61(8):696–700.

    Google Scholar 

  21. Chuah AM, Jacob B, Jie Z, Ramesh S, Mandal S, Puthan JK, et al. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem. 2014;156:227–33.

    Article  CAS  PubMed  Google Scholar 

  22. Pan MH, Huang T, Lin J. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999;27(4):486–94.

    CAS  PubMed  Google Scholar 

  23. Ravindranath V, Chandrasekhara N. Absorption and tissue distribution of curcumin in rats. Toxicology. 1980;16(3):259–65.

    Article  CAS  PubMed  Google Scholar 

  24. Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica. 1978;8(12):761–8.

  25. Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, et al. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch Biochem Biophys. 2018;646:31–7. https://doi.org/10.1016/j.abb.2018.03.030.

    Article  CAS  PubMed  Google Scholar 

  26. Chen CY, Yang WL, Kuo SY. Cytotoxic activity and cell cycle analysis of hexahydrocurcumin on SW 480 human colorectal cancer cells. Nat Prod Commun. 2011;6(11):1671–2.

    Article  CAS  PubMed  Google Scholar 

  27. Khopde SM, Priyadarsini KI, Guha SN, Satav JG, Venkatesan P, Rao MNA. Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem. 2000;64(3):503–9.

    Article  CAS  PubMed  Google Scholar 

  28. Okada K, Wangpoengtrakul C, Tanaka T, Toyokuni S, Uchida K, Osawa T. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr. 2001;131(8):2090–5.

    Article  CAS  PubMed  Google Scholar 

  29. Lai CS, Wu JC, Yu SF, Badmaev V, Nagabhushanam K, Ho CT, et al. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. Mol Nutr Food Res. 2011;55(12):1819–28.

    Article  CAS  PubMed  Google Scholar 

  30. Pari L, Murugan P. Tetrahydrocurcumin: effect on chloroquine-mediated oxidative damage in rat kidney. Basic Clin Pharmacol Toxicol. 2006;99(5):329–34.

    Article  CAS  PubMed  Google Scholar 

  31. Murugan P, Pari L. Effect of tetrahydrocurcumin on plasma antioxidants in streptozotocin–nicotinamide induced experimental diabetes. J Basic Clin Physiol Pharmacol. 2006;17(4):231–44.

    Article  CAS  PubMed  Google Scholar 

  32. Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull. 2007;30(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  33. Chan LM, Lowes S, Hirst BH. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci. 2004;21(1):25–51.

    Article  CAS  PubMed  Google Scholar 

  34. Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011;59(17):9280–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hani U, Shivakumar H. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Curr Drug Deliv. 2014;11(6):792–804.

    Article  CAS  PubMed  Google Scholar 

  36. Ajay S, Harita D, Tarique M, Amin P. Solubility and dissolution rate enhancement of curcumin using Kollidon VA64 by solid dispersion technique. Int J Pharm Tech Res. 2012;4:1055–64.

  37. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–83. https://doi.org/10.1016/j.biomaterials.2013.12.090.

    Article  CAS  PubMed  Google Scholar 

  38. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  39. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, et al. Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014;153:361–70.

    Article  CAS  PubMed  Google Scholar 

  40. Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10(3):752–62. https://doi.org/10.1208/s12249-009-9264-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1, 2):127–35.

    Article  PubMed  Google Scholar 

  42. Singh R, Tønnesen HH, Vogensen SB, Loftsson T, Másson M. Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV–Vis titration. J Incl Phenom Macrocycl Chem. 2010;66(3, 4):335–48.

    Article  CAS  Google Scholar 

  43. Yallapu MM, Jaggi M, Chauhan SC. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B. 2010;79(1):113–25.

    Article  CAS  Google Scholar 

  44. Dhirendra K, Lewis S, Udupa N, Atin K. Solid dispersions: a review. Pak J Pharm Sci. 2009;22(2):234–46.

    CAS  PubMed  Google Scholar 

  45. Allawadi D, Singh N, Singh S, Arora S. Solid dispersions: a review on drug delivery system and solubility enhancement. Int J Pharm Sci Res. 2013;4(6):2094.

    CAS  Google Scholar 

  46. Cilurzo F, Minghetti P, Casiraghi A, Montanari L. Characterization of nifedipine solid dispersions. Int J Pharm. 2002;242(1–2):313–7.

    Article  CAS  PubMed  Google Scholar 

  47. Seo SW, Han HK, Chun MK, Choi HK. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int J Pharm. 2012;424(1–2):18–25.

    Article  CAS  PubMed  Google Scholar 

  48. Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech. 2012;13(1):159–66. https://doi.org/10.1208/s12249-011-9732-9.

    Article  CAS  PubMed  Google Scholar 

  49. Teixeira C, Mendonca L, Bergamaschi M, Queiroz R, Souza G, Antunes L, et al. Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech. 2016;17(2):252–61.

    Article  CAS  PubMed  Google Scholar 

  50. Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol. 2007;5(4):567–76.

    Article  CAS  PubMed  Google Scholar 

  51. Yan YD, Kim JA, Kwak MK, Yoo BK, Yong CS, Choi H-G. Enhanced oral bioavailability of curcumin via a solid lipid-based self-emulsifying drug delivery system using a spray-drying technique. Biol Pharm Bull. 2011;34(8):1179–86.

    Article  CAS  PubMed  Google Scholar 

  52. Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–12.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang P, Liu Y, Feng N, Xu J. Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm. 2008;355(1–2):269–76.

    Article  CAS  PubMed  Google Scholar 

  54. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Hong MJ, Jee JP, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm. 2009;72(3):539–45.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar A, Sahoo SK, Padhee K, Kochar P, Sathapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Pharmacie Globale. 2011;3(3):001–7.

    Google Scholar 

  56. Jiang Y, Wang J, Wang Y, Ke X, Zhang C, Yang R. Self-emulsifying drug delivery system improves preventive effect of curcuminoids on chronic heart failure in rats. Saudi Pharm J. 2018;26(4):528–34. https://doi.org/10.1016/j.jsps.2018.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Berginc K, Trontelj J, Basnet NS, Kristl A. Physiological barriers to the oral delivery of curcumin. Die Pharmazie. 2012;67(6):518–24.

    CAS  PubMed  Google Scholar 

  58. Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, et al. Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett. 2003;555(2):311–6.

    Article  CAS  PubMed  Google Scholar 

  59. Lopes Rodrigues V, Sousa E, Vasconcelos MH. Curcumin as a modulator of P-glycoprotein in cancer: challenges and perspectives. Pharmaceuticals. 2016;9(4):71.

    Article  CAS  PubMed Central  Google Scholar 

  60. Anuchapreeda S, Leechanachai P, Smith MM, Ambudkar SV, Limtrakul P-N. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol. 2002;64(4):573–82.

    Article  CAS  PubMed  Google Scholar 

  61. Romiti N, Tongiani R, Cervelli F, Chieli E. Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes. Life Sci. 1998;62(25):2349–58.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang JY, Lin MT, Zhou MJ, Yi T, Tang YN, Tang SL, et al. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules. 2015;20(6):11524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim HG, Lee JH, Lee SJ, Oh J-H, Shin E, Jang YP, et al. The increased cellular uptake and biliary excretion of curcumin by quercetin: a possible role of albumin binding interaction. Drug Metab Dispos. 2012;40:1452–5.

    Article  CAS  PubMed  Google Scholar 

  64. Grill AE, Koniar B, Panyam J. Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv Transl Res. 2014;4(4):344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, et al. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm. 2015;490(1–2):22–31. https://doi.org/10.1016/j.ijpharm.2015.05.008.

    Article  CAS  PubMed  Google Scholar 

  66. Moorthi C, Kathiresan K. Curcumin–piperine/curcumin–quercetin/curcumin–silibinin dual drug-loaded nanoparticulate combination therapy: a novel approach to target and treat multidrug-resistant cancers. J Med Hypotheses Ideas. 2013;7(1):15–20.

    Article  CAS  Google Scholar 

  67. Shoba G, Joy D, Joseph T, Rajendran MMR, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–6.

    Article  CAS  PubMed  Google Scholar 

  68. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487–90.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomed. 2017;12:2689.

    Article  CAS  Google Scholar 

  70. Wang F, Chen J, Dai W, He Z, Zhai D, Chen W. Pharmacokinetic studies and anticancer activity of curcumin-loaded nanostructured lipid carriers. Acta Pharm. 2017;67(3):357–71.

    Article  CAS  PubMed  Google Scholar 

  71. Adiwidjaja J, McLachlan AJ, Boddy AV. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol. 2017;13(9):953–72.

    Article  CAS  PubMed  Google Scholar 

  72. Dhule SS, Penfornis P, Frazier T, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. In: Balogh LP, editor. Nanomedicine in cancer. New York: Pan Stanford; 2017. p. 291–322.

  73. Jahagirdar PS, Gupta PK, Kulkarni SP, Devarajan PV. Polymeric curcumin nanoparticles by a facile in situ method for macrophage targeted delivery. Bioeng Transl Med. 2019;4:141–51.

    Article  CAS  PubMed  Google Scholar 

  74. Wei Z-Q, Zhang Y-H, Ke C-Z, Chen H-X, Ren P, He Y-L, et al. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol. 2017;23(34):6252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Busari ZA, Dauda KA, Morenikeji OA, Afolayan F, Oyeyemi OT, Meena J, et al. Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles. Front Pharmacol. 2017;8:622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol. 2018;45(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  77. Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017;142:148–57.

    Article  CAS  PubMed  Google Scholar 

  78. Mande PP, Bachhav SS, Devarajan PV. Solid dispersion of curcumin as polymeric films for bioenhancement and improved therapy of rheumatoid arthritis. Pharm Res. 2016;33(8):1972–87. https://doi.org/10.1007/s11095-016-1934-0.

    Article  CAS  PubMed  Google Scholar 

  79. Gao Y, Li Z, Sun M, Li H, Guo C, Cui J, et al. Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev Ind Pharm. 2010;36(10):1225–34.

    Article  CAS  PubMed  Google Scholar 

  80. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785.

    Article  CAS  PubMed  Google Scholar 

  81. Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv. 2012;9(11):1347–64.

    Article  CAS  PubMed  Google Scholar 

  82. Kavitha V, Neethu C, Dineshkumar B, Krishnakumar K, John A. Nanosuspension formulation: an improved drug delivery system. Nanosci Nanotechnol Int J. 2014;4:1–5.

    Google Scholar 

  83. Arunkumar N, Deecaraman M, Rani C. Nanosuspension technology and its applications in drug delivery. Asian J Pharm. 2014;3(3).

  84. Yadollahi R, Vasilev K, Simovic S. Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater. 2015;2015:1.

    Article  CAS  Google Scholar 

  85. Li X, Gu L, Xu Y, Wang Y. Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats. Drug Dev Ind Pharm. 2009;35(7):827–33.

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–41.

    Article  CAS  PubMed  Google Scholar 

  87. Kaur J, Bawa P, Rajesh SY, Sharma P, Ghai D, Jyoti J, et al. Formulation of curcumin nanosuspension using Box–Behnken design and study of impact of drying techniques on its powder characteristics. Asian J Pharm Clin Res. 2017;10:43–51. https://doi.org/10.22159/ajpcr.2017.v10s4.

    Article  Google Scholar 

  88. Wang Y, Wang C, Zhao J, Ding Y, Li L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J Colloid Interface Sci. 2017;485:91–8. https://doi.org/10.1016/j.jcis.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  89. Gao Y, Wang C, Sun M, Wang X, Yu A, Li A, et al. In vivo evaluation of curcumin loaded nanosuspensions by oral administration. J Biomed Nanotechnol. 2012;8(4):659–68.

    Article  CAS  PubMed  Google Scholar 

  90. Hirlekar SDS, Bhairy S, Bhairy S, Hirlekar R, Hirlekar R. Preparation and characterization of oral nanosuspension loaded with curcumin. Int J Pharm Pharm Sci. 2018;10(6):90. https://doi.org/10.22159/ijpps.2018v10i6.22027.

    Article  CAS  Google Scholar 

  91. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shaheen SM, Shakil Ahmed F, Hossen MN, Ahmed M, Amran MS, Ul-Islam M. Liposome as a carrier for advanced drug delivery. Pak J Biol Sci. 2006;9(6):1181–91.

    Article  CAS  Google Scholar 

  93. Shashi K, Satinder K, Bharat P. A complete review on: liposomes. Int Res J Pharm. 2012;3(7):10–6.

    Google Scholar 

  94. Maiti P, Dunbar GL. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci. 2018;19(6):E1637. https://doi.org/10.3390/ijms19061637.

    Article  CAS  PubMed  Google Scholar 

  95. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–9.

    Article  CAS  PubMed  Google Scholar 

  96. Li ZL, Peng SF, Chen X, Zhu YQ, Zou LQ, Liu W, et al. Pluronics modified liposomes for curcumin encapsulation: sustained release, stability and bioaccessibility. Food Res Int. 2018;108:246–53. https://doi.org/10.1016/j.foodres.2018.03.048.

    Article  CAS  PubMed  Google Scholar 

  97. Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem. 2009;57(19):9141–6. https://doi.org/10.1021/jf9013923.

    Article  CAS  PubMed  Google Scholar 

  98. Aadinath W, Bhushani A, Anandharamakrishnan C. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes. Mater Sci Eng C. 2016;64:293–302.

    Article  CAS  Google Scholar 

  99. Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomed. 2012;7:5995–6002. https://doi.org/10.2147/IJN.S38043.

    Article  CAS  Google Scholar 

  100. Chen H, Wu J, Sun M, Guo C, Yu A, Cao F, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22(2):100–9.

    Article  CAS  PubMed  Google Scholar 

  101. Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2(1):80–102.

    CAS  Google Scholar 

  103. Bansal AK, Munjal B. Preparation of solid lipid nanoparticles for enhancement of oral bioavailability of curcumin. In: He J, editor. The 1st Electronic Conference on Pharmaceutical Sciences; 2011 Mar 1–31. Basel: Multidisciplinary Digital Publishing Institute; 2011.

  104. Baek JS, Cho CW. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur J Pharm Biopharm. 2017;117:132–40. https://doi.org/10.1016/j.ejpb.2017.04.013.

    Article  CAS  PubMed  Google Scholar 

  105. Guorgui J, Wang R, Mattheolabakis G, Mackenzie GG. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch Biochem Biophys. 2018;648:12–9. https://doi.org/10.1016/j.abb.2018.04.012.

    Article  CAS  PubMed  Google Scholar 

  106. Ji H, Tang J, Li M, Ren J, Zheng N, Wu L. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 2016;23(2):459–70. https://doi.org/10.3109/10717544.2014.918677.

    Article  CAS  PubMed  Google Scholar 

  107. Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55(3):495–503. https://doi.org/10.1002/mnfr.201000310.

    Article  CAS  PubMed  Google Scholar 

  108. Ramalingam P, Yoo SW, Ko YT. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int. 2016;84:113–9. https://doi.org/10.1016/j.foodres.2016.03.031.

    Article  CAS  Google Scholar 

  109. Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32(2):389–402. https://doi.org/10.1007/s11095-014-1469-1.

    Article  CAS  PubMed  Google Scholar 

  110. Beloqui A, Memvanga PB, Coco R, Reimondez-Troitino S, Alhouayek M, Muccioli GG, et al. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces. 2016;143:327–35. https://doi.org/10.1016/j.colsurfb.2016.03.038.

    Article  CAS  PubMed  Google Scholar 

  111. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93.

    Article  Google Scholar 

  112. Heuschkel S, Goebel A, Neubert RH. Microemulsions—modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97(2):603–31.

    Article  CAS  PubMed  Google Scholar 

  113. Moulik S, Paul B. Structure, dynamics and transport properties of microemulsions. Adv Colloids Interface Sci. 1998;78(2):99–195.

    Article  CAS  Google Scholar 

  114. Kurita T, Makino Y. Novel curcumin oral delivery systems. Anticancer Res. 2013;33(7):2807–21.

    CAS  PubMed  Google Scholar 

  115. Shinde RL, Jindal A, Devarajan PV. Microemulsions and nanoemulsions for targeted drug delivery to the brain. Curr Nanosci. 2011;7(1):119–33.

    Article  CAS  Google Scholar 

  116. Muzaffar F, Singh U, Chauhan L. Review on microemulsion as futuristic drug delivery. Int J Pharm Pharm Sci. 2013;5(3):39–53.

    CAS  Google Scholar 

  117. Madhav S, Gupta D. A review on microemulsion based system. Int J Pharm Sci Res. 2011;2(8):1888.

    CAS  Google Scholar 

  118. Narang AS, Delmarre D, Gao D. Stable drug encapsulation in micelles and microemulsions. Int J Pharm. 2007;345(1–2):9–25.

    Article  CAS  PubMed  Google Scholar 

  119. He C-X, He Z-G, Gao J-Q. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv. 2010;7(4):445–60.

    Article  CAS  PubMed  Google Scholar 

  120. Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a review. Syst Rev Pharm. 2017;8(1):39.

    Article  CAS  Google Scholar 

  121. Shinde RL, Devarajan PV. Docosahexaenoic acid-mediated, targeted and sustained brain delivery of curcumin microemulsion. Drug Deliv. 2017;24(1):152–61. https://doi.org/10.1080/10717544.2016.1233593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shinde RL, Bharkad GP, Devarajan PV. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: role of docosahexaenoic acid. Eur J Pharm Biopharm. 2015;96:363–79. https://doi.org/10.1016/j.ejpb.2015.08.008.

    Article  CAS  PubMed  Google Scholar 

  123. Bera A, Mandal A. Microemulsions: a novel approach to enhanced oil recovery: a review. J Pet Explor Prod Technol. 2015;5(3):255–68.

    Article  CAS  Google Scholar 

  124. Bergonzi MC, Hamdouch R, Mazzacuva F, Isacchi B, Bilia AR. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT Food Sci Technol. 2014;59(1):148–55. https://doi.org/10.1016/j.lwt.2014.06.009.

    Article  CAS  Google Scholar 

  125. Hu L, Jia Y, Niu F, Jia Z, Yang X, Jiao K. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J Agric Food Chem. 2012;60(29):7137–41. https://doi.org/10.1021/jf204078t.

    Article  CAS  PubMed  Google Scholar 

  126. Xiao Y, Chen X, Yang L, Zhu X, Zou L, Meng F, et al. Preparation and oral bioavailability study of curcuminoid-loaded microemulsion. J Agric Food Chem. 2013;61(15):3654–60.

    Article  CAS  PubMed  Google Scholar 

  127. Chouksey R, Pandey H, Jain A, Soni H, Saraogi G. Preparation and evaluation of the self-emulsifying drug delivery system containing atorvastatin HMG-CoA inhibiter. Int J Pharm Pharm Sci. 2011;3(3):147–52.

    CAS  Google Scholar 

  128. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  129. Patel PA, Chaulang G, Akolkotkar A, Mutha S, Hardikar S, Bhosale A. Self emulsifying drug delivery system: a review. Res J Pharm Technol. 2008;1(4):313–23.

    CAS  Google Scholar 

  130. Cui J, Yu B, Zhao Y, Zhu W, Li H, Lou H, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1–2):148–55. https://doi.org/10.1016/j.ijpharm.2008.12.009.

    Article  CAS  PubMed  Google Scholar 

  131. Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm. 2010;76(3):475–85. https://doi.org/10.1016/j.ejpb.2010.07.011.

    Article  CAS  PubMed  Google Scholar 

  132. Wu X, Xu J, Huang X, Wen C. Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability. Drug Dev Ind Pharm. 2011;37(1):15–23. https://doi.org/10.3109/03639045.2010.489560.

    Article  CAS  PubMed  Google Scholar 

  133. Thakur N, Garg G, Sharma P, Kumar N. Nanoemulsions: a review on various pharmaceutical application. Glob J Pharmacol. 2012;6(3):222–5.

    Google Scholar 

  134. Devarajan P, Shinde R. Advances in microemulsions and nanoemulsions for improved therapy in brain cancer. Advanced anticancer approaches with multifunctional lipid nanocarriers. London: i Smithers—Creative Publishing Solutions; 2011. p. 347–94.

  135. Sharma N, Mishra S, Sharma S, Deshpande RD, Sharma RK. Preparation and optimization of nanoemulsions for targeting drug delivery. Int J Drug Dev Res. 2013;5(4):37–48.

    Google Scholar 

  136. Wilking J, Graves S, Chang C, Meleson K, Lin M, Mason T. Dense cluster formation during aggregation and gelation of attractive slippery nanoemulsion droplets. Phys Rev Lett. 2006;96(1):015501.

    Article  CAS  PubMed  Google Scholar 

  137. Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280(1–2):241–51.

    Article  CAS  PubMed  Google Scholar 

  138. Jaiswal M, Dudhe R, Sharma P. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.

    Article  PubMed  Google Scholar 

  139. Reza KH. Nanoemulsion as a novel transdermal drug delivery system. Int J Pharm Sci Res. 2011;2(8):1938.

    Google Scholar 

  140. Jintapattanakit A, Hasan HM, Junyaprasert VB. Vegetable oil-based nanoemulsions containing curcuminoids: formation optimization by phase inversion temperature method. J Drug Deliv Sci Technol. 2018;44:289–97. https://doi.org/10.1016/j.jddst.2017.12.018.

    Article  CAS  Google Scholar 

  141. Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem. 2012;60(21):5373–9. https://doi.org/10.1021/jf300609p.

    Article  PubMed  CAS  Google Scholar 

  142. Young NA, Bruss MS, Gardner M, Willis WL, Mo X, Valiente GR, et al. Oral administration of nano-emulsion curcumin in mice suppresses inflammatory-induced NFkappaB signaling and macrophage migration. PLoS One. 2014;9(11):e111559. https://doi.org/10.1371/journal.pone.0111559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhongfa L, Chiu M, Wang J, Chen W, Yen W, Fan-Havard P, et al. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol. 2012;69(3):679–89. https://doi.org/10.1007/s00280-011-1749-y.

    Article  CAS  PubMed  Google Scholar 

  144. Langella A, Calcagno V, De Gregorio V, Urciuolo F, Imparato G, Vecchione R, et al. In vitro study of intestinal epithelial interaction with engineered oil in water nanoemulsions conveying curcumin. Colloids Surf B Biointerfaces. 2018;164:232–9. https://doi.org/10.1016/j.colsurfb.2018.01.028.

    Article  CAS  PubMed  Google Scholar 

  145. Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccines Immunother. 2014;10(2):321–32.

    Article  CAS  Google Scholar 

  146. Hanemann T, Szabó DV. Polymer–nanoparticle composites: from synthesis to modern applications. Materials. 2010;3(6):3468–517.

    Article  CAS  PubMed Central  Google Scholar 

  147. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.

    Article  CAS  Google Scholar 

  148. Mohanraj V, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  149. Mallakpour S, Behranvand V. Polymeric nanoparticles: recent development in synthesis and application. Express Polym Lett. 2016;10(11):895.

    Article  CAS  Google Scholar 

  150. Bharadwaj V, Ravikumar M. Polymeric nanoparticles for oral delivery. New York: Taylor and Francis; 2006.

    Google Scholar 

  151. Nasir A, Kausar A, Younus A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym Plast Technol Eng. 2015;54(4):325–41.

    Article  CAS  Google Scholar 

  152. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci. 2011;1(6):228–34.

    Google Scholar 

  153. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017;2017:129.

    Google Scholar 

  154. Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H. Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res. 2012;5(3):16–23.

    CAS  Google Scholar 

  155. Tiruwa R. A review on nanoparticles—preparation and evaluation parameters. Indian J Pharm Biol Res. 2016;4(2):27.

    CAS  Google Scholar 

  156. D’Souza AA, Jain P, Galdhar CN, Samad A, Degani MS, Devarajan PV. Comparative in silico–in vivo evaluation of ASGP-R ligands for hepatic targeting of curcumin Gantrez nanoparticles. AAPS J. 2013;15(3):696–706. https://doi.org/10.1208/s12248-013-9474-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jawahar N, Meyyanathan S. Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Health Allied Sci. 2012;1(4):217.

    Article  Google Scholar 

  158. Fan Y, Yi J, Zhang Y, Yokoyama W. Fabrication of curcumin-loaded bovine serum albumin (BSA)–dextran nanoparticles and the cellular antioxidant activity. Food Chem. 2018;239:1210–8. https://doi.org/10.1016/j.foodchem.2017.07.075.

    Article  CAS  PubMed  Google Scholar 

  159. Chang C, Wang T, Hu Q, Luo Y. Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: effect of polysaccharide type and chemical cross-linking. Food Hydrocoll. 2017;72:254–62. https://doi.org/10.1016/j.foodhyd.2017.05.039.

    Article  CAS  Google Scholar 

  160. Baspinar Y, Ustundas M, Bayraktar O, Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: development and in-vitro characterisation. Saudi Pharm J. 2018;26(3):323–34. https://doi.org/10.1016/j.jsps.2018.01.010.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yadav P, Bandyopadhyay A, Chakraborty A, Sarkar K. Enhancement of anticancer activity and drug delivery of chitosan–curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr Polym. 2018;182:188–98. https://doi.org/10.1016/j.carbpol.2017.10.102.

    Article  CAS  PubMed  Google Scholar 

  162. Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol. 2013;18(3):591–9.

    Article  CAS  PubMed  Google Scholar 

  163. Facchi SP, Scariot DB, Bueno PV, Souza PR, Figueiredo LC, Follmann HD, et al. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. Int J Biol Macromol. 2016;87:237–45. https://doi.org/10.1016/j.ijbiomac.2016.02.063.

    Article  CAS  PubMed  Google Scholar 

  164. Shelma R, Sharma CP. In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr Polym. 2013;95(1):441–8. https://doi.org/10.1016/j.carbpol.2013.02.029.

    Article  CAS  PubMed  Google Scholar 

  165. Li J, Jiang F, Chi Z, Han D, Yu L, Liu C. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Int J Biol Macromol. 2018;112:413–21. https://doi.org/10.1016/j.ijbiomac.2018.02.002.

    Article  CAS  PubMed  Google Scholar 

  166. Umerska A, Gaucher C, Oyarzun-Ampuero F, Fries-Raeth I, Colin F, Villamizar-Sarmiento MG, et al. Polymeric nanoparticles for increasing oral bioavailability of curcumin. Antioxidants. 2018;7(4):46.

    Article  CAS  PubMed Central  Google Scholar 

  167. Razi MA, Wakabayashi R, Tahara Y, Goto M, Kamiya N. Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids Surf B Biointerfaces. 2018;164:308–15. https://doi.org/10.1016/j.colsurfb.2018.01.041.

    Article  CAS  PubMed  Google Scholar 

  168. Ren D, Qi J, Xie A, Jia M, Yang X, Xiao H. Encapsulation in lysozyme/A. sphaerocephala Krasch polysaccharide nanoparticles increases stability and bioefficacy of curcumin. J Funct Foods. 2017;38:100–9. https://doi.org/10.1016/j.jff.2017.09.004.

  169. Dende C, Meena J, Nagarajan P, Nagaraj VA, Panda AK, Padmanaban G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria. Sci Rep. 2017;7(1):10062. https://doi.org/10.1038/s41598-017-10672-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ganugula R, Arora M, Jaisamut P, Wiwattanapatapee R, Jorgensen HG, Venkatpurwar VP, et al. Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of type 1 diabetes mellitus. Br J Pharmacol. 2017;174(13):2074–84. https://doi.org/10.1111/bph.13816.

  171. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30. https://doi.org/10.1016/j.ejps.2009.02.019.

    Article  CAS  PubMed  Google Scholar 

  172. Khalil NM, do Nascimento TC, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353–60. https://doi.org/10.1016/j.colsurfb.2012.06.024.

    Article  CAS  PubMed  Google Scholar 

  173. Tsai YM, Jan WC, Chien CF, Lee WC, Lin LC, Tsai TH. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem. 2011;127(3):918–25. https://doi.org/10.1016/j.foodchem.2011.01.059.

    Article  CAS  PubMed  Google Scholar 

  174. Liu C, Yang X, Wu W, Long Z, Xiao H, Luo F, et al. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocoll. 2018;77:834–42. https://doi.org/10.1016/j.foodhyd.2017.11.027.

    Article  CAS  Google Scholar 

  175. Peng S, Li Z, Zou L, Liu W, Liu C, McClements DJ. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct. 2018;9(3):1829–39. https://doi.org/10.1039/c7fo01814b.

    Article  CAS  PubMed  Google Scholar 

  176. Jaiswal S, Mishra P. Co-delivery of curcumin and serratiopeptidase in HeLa and MCF-7 cells through nanoparticles show improved anti-cancer activity. Mater Sci Eng C. 2018;92:673–84. https://doi.org/10.1016/j.msec.2018.07.025.

    Article  CAS  Google Scholar 

  177. Sarika PR, James NR. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydr Polym. 2016;148:354–61. https://doi.org/10.1016/j.carbpol.2016.04.073.

    Article  CAS  PubMed  Google Scholar 

  178. Chaurasia S, Patel RR, Chaubey P, Kumar N, Khan G, Mishra B. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin. Carbohydr Polym. 2015;130:9–17. https://doi.org/10.1016/j.carbpol.2015.04.062.

    Article  CAS  PubMed  Google Scholar 

  179. Zhang J, Chen L, Tse WH, Bi R, Chen L. Inorganic nanoparticles: engineering for biomedical applications. IEEE Nanatechnol Mag. 2014;8(4):21–8.

    Article  CAS  Google Scholar 

  180. Pranatharthiharan S, Patel MD, D’Souza AA, Devarajan PV. Inorganic nanovectors for nucleic acid delivery. Drug Deliv Transl Res. 2013;3(5):446–70.

    Article  CAS  PubMed  Google Scholar 

  181. Paul W, Sharma C. Inorganic nanoparticles for targeted drug delivery. Biointegration of medical implant materials. Amsterdam: Elsevier; 2010. p. 204–35.

    Book  Google Scholar 

  182. Pandey P, Dahiya M. A brief review on inorganic nanoparticles. J Crit Rev. 2016;3(3):2016.

    Google Scholar 

  183. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.

    Article  CAS  PubMed  Google Scholar 

  184. Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today. 2012;7(5):467–80.

    Article  CAS  Google Scholar 

  185. Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013:340315.

  186. Mondon K, Gurny R, Möller M. Colloidal drug delivery systems—recent advances with polymeric micelles. CHIMIA Int J Chem. 2008;62(10):832–40.

    Article  CAS  Google Scholar 

  187. Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Patents Nanomed. 2012;2(2):82–95.

    Article  CAS  Google Scholar 

  188. Duan Y, Zhang B, Chu L, Tong HH, Liu W, Zhai G. Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids Surf B. 2016;141:345–54.

    Article  CAS  Google Scholar 

  189. Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22(12):1103–11. https://doi.org/10.1016/j.phymed.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  190. Wei TK, Manickam S. Response surface methodology, an effective strategy in the optimization of the generation of curcumin-loaded micelles. Asia Pac J Chem Eng. 2012;7:S125–33.

    Article  CAS  Google Scholar 

  191. Parikh A, Kathawala K, Song Y, Zhou X-F, Garg S. Curcumin-loaded self-nanomicellizing solid dispersion system: part I: development, optimization, characterization, and oral bioavailability. Drug Deliv Transl Res. 2018;8:1389–405.

    Article  CAS  PubMed  Google Scholar 

  192. Krause K, Müller R. Production and characterisation of highly concentrated nanosuspensions by high pressure homogenisation. Int J Pharm. 2001;214(1–2):21–4.

    Article  CAS  PubMed  Google Scholar 

  193. Shariffa Y, Tan T, Uthumporn U, Abas F, Mirhosseini H, Nehdi I, et al. Producing a lycopene nanodispersion: formulation development and the effects of high pressure homogenization. Food Res Int. 2017;101:165–72.

    Article  CAS  PubMed  Google Scholar 

  194. Allam AN, Komeil IA, Fouda MA, Abdallah OY. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability. Int J Pharm. 2015;489(1–2):117–23. https://doi.org/10.1016/j.ijpharm.2015.04.067.

    Article  CAS  PubMed  Google Scholar 

  195. Zhang Q, Polyakov NE, Chistyachenko YS, Khvostov MV, Frolova TS, Tolstikova TG, et al. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tan KW, Tang SY, Thomas R, Vasanthakumari N, Manickam S. Curcumin-loaded sterically stabilized nanodispersion based on non-ionic colloidal system induced by ultrasound and solvent diffusion-evaporation. Pure Appl Chem. 2016;88(1–2):43–60.

    Article  CAS  Google Scholar 

  197. Bhingardeve D, Patil S, Patil R, Patil S. Phytosome-valuable phyto-phospholipid carriers. Curr Pharm Res. 2014;5(1):1386.

    Article  CAS  Google Scholar 

  198. Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680–9. https://doi.org/10.1016/j.fitote.2010.05.001.

    Article  CAS  PubMed  Google Scholar 

  199. Gandhi A, Dutta A, Pal A, Bakshi P. Recent trends of phytosomes for delivering herbal extract with improved bioavailability. J Pharmacogn Phytochem. 2012;1(4):6.

    Google Scholar 

  200. Jain N, Gupta BP, Thakur N, Jain R, Banweer J, Jain DK, et al. Phytosome: a novel drug delivery system for herbal medicine. Int J Pharm Sci Drug Res. 2010;2(4):224–8.

    CAS  Google Scholar 

  201. Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. 2007;60(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  202. Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14(3):226–46.

    PubMed  Google Scholar 

  203. Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, et al. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod. 2011;74(4):664–9.

    Article  CAS  PubMed  Google Scholar 

  204. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63. https://doi.org/10.1016/j.ijpharm.2006.09.025.

  205. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin–phospholipid complex in rats. J Pharm Pharmacol. 2006;58(9):1227–33.

    Article  CAS  PubMed  Google Scholar 

  206. Bhattacharya S. Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res. 2009;2(3):225–32.

    Article  CAS  Google Scholar 

  207. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci. 2013;3(09):142–9.

    Google Scholar 

  209. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37.

    Article  CAS  PubMed  Google Scholar 

  210. Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R, et al. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev. 2013;14(11):6925–8. https://doi.org/10.7314/apjcp.2013.14.11.6925.

    Article  PubMed  Google Scholar 

  211. Gamage NH, Jing L, Worsham MJ, Ali MM. Targeted theranostic approach for glioma using dendrimer-based curcumin nanoparticle. J Nanomed Nanotechnol. 2016;7(4):393. https://doi.org/10.4172/2157-7439.1000393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Debnath S, Saloum D, Dolai S, Sun C, Averick S, Raja K, et al. Dendrimer–curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anti-Cancer Agents Med Chem. 2013;13(10):1531–9.

    Article  CAS  Google Scholar 

  213. Mollazade M, Zarghami N, Nasiri M, Nejati K, Rahmati M, Pourhasan M. Polyamidoamine (PAMAM) encapsulated curcumin inhibits telomerase activity in breast cancer cell line. Clin Biochem. 2011;13(44):S217.

    Article  Google Scholar 

  214. Esmatabadi MJD, Motamedrad M, Sadeghizadeh M. Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells. Phytomedicine. 2018;42:56–65. https://doi.org/10.1016/j.phymed.2018.03.022.

    Article  CAS  PubMed  Google Scholar 

  215. O’Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15(5):405–15.

    Article  PubMed  Google Scholar 

  216. Jahanizadeh S, Yazdian F, Marjani A, Omidi M, Rashedi H. Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. Int J Biol Macromol. 2017;105(Pt 1):757–63. https://doi.org/10.1016/j.ijbiomac.2017.07.101.

    Article  CAS  PubMed  Google Scholar 

  217. Bachhav SS, Dighe VD, Devarajan PV. Exploring Peyer’s patch uptake as a strategy for targeted lung delivery of polymeric rifampicin nanoparticles. Mol Pharm. 2018;15(10):4434–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma V. Devarajan.

Ethics declarations

Funding

No funding was received for this manuscript.

Conflict of interest

Vinod S. Ipar, Anisha A. D’Souza, and Padma V. Devarajan report that they have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipar, V.S., Dsouza, A. & Devarajan, P.V. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Eur J Drug Metab Pharmacokinet 44, 459–480 (2019). https://doi.org/10.1007/s13318-019-00545-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-019-00545-z

Navigation