Skip to main content
Log in

RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) shows high levels of variation in fruit color, fruit stripe pattern, seed coat color, and size. Thirty-eight accessions of C. colocynthis plants from different parts of semi-arid Rajasthan were collected and genetic diversity was assessed using random-amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Out of 65 RAPD decamer primers, 50 primers produced 549 scorable bands of which 318 were polymorphic. Polymorphic banding patterns with the number of amplified fragments varied from 5 (OPA-08 and OPF-9) to 19 (OPT-20) in the molecular size range of 150–6000 bp. Percent polymorphism ranged from 22.2% (OPA-09) to 83.3% (OPE-12) with 55.14% polymorphism. Out of the 20 ISSR primers screened, 13 primers produced 166 amplification products, of which 99 were polymorphic. The number of bands amplified per primer varied between 9 (UBC-807, 802) and 16 (UBC-803, 812) with average band size between 250 and 4000 bp. Percent polymorphism ranged from 45.4% (UBC-815) to 73.3% (UBC-814) with 65.05% polymorphism. Dendrogram constructed on the basis of RAPD + ISSR polymorphism separated the accessions into four distinct clusters at 72% variation with Jaccard’s similarity coefficient ranging from minimum 0.64 to 0.95. The matrices for RAPD and ISSR were also compared using Mantel’s test and obtained correlation value (r = 0.7947). Discriminating power of RAPD and ISSR markers was assessed by calculating polymorphic information content, multiplex ratio, marker index, and resolving power. Approx. 50% RAPD and ISSR markers showed PIC value and heterozygosity (H) ≥ 0.50, indicating marker as informative. The primers that showed higher polymorphism had higher RP, MR, and MI values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliakbarkhani ST, Akbari M, Hassankhah A et al (2015) Phenotypic and genotypic variation in Iranian Pistachios. J Genet Eng Biotechnol 13(2):235–241

    Article  Google Scholar 

  • Anderson JA, Churchill JE, Autrique SD et al (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–188

    Article  CAS  Google Scholar 

  • Bhandari MM (1995) Flora of the Indian desert. MPS Repros, Jodhpur

    Google Scholar 

  • Bohn MH, Utz F, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Article  CAS  Google Scholar 

  • Chowdhury MA, Vandenberg B, Warkentin T (2002) Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127:317–325

    Article  CAS  Google Scholar 

  • Csillery K, Blum MGB, Gaggiotti OE, Francois O (2010) Approximate bayesian computation (ABC) in practice. Trends Ecol Evol 25:410–418

    Article  Google Scholar 

  • Dane F, Liu J, Zhang C (2006) Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Evol 54:327–336

    Article  Google Scholar 

  • Debajit S, Sukriti D, Sneha G, Mohan L et al (2015) RAPD and ISSR based Intra-specific molecular genetic diversity analysis of Cymbopogon flexuosus L. Stapf with a distinct correlation of morpho-chemical observations. Res J Biotechnol 10(7):105–113

    CAS  Google Scholar 

  • Dje Y, Tahi CG, Bi AZ et al (2010) Use of ISSR markers to assess genetic diversity of African edible seeded Citrullus lanatus landraces. Sci Hortic 124(2):159–164

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eshghi R, Ebrahimpour F, Ojaghi J et al (2012) Evaluation of genetic variability in naked barley (Hordeum vulgare L.). Intl J Agric Crop Sci 4:1166–1179

    Google Scholar 

  • Fang DQ, Roose ML (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–417

    Article  CAS  Google Scholar 

  • Farajpour M, Ebrahimi M, Amiri R et al (2011) Study of genetic variation in yarrow using inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol 10(54):11137–11141

    CAS  Google Scholar 

  • Gajera BB, Kumar N, Singh AS et al (2010) Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind Crops Prod 32(3):491–498

    Article  CAS  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  Google Scholar 

  • Gonzalez A, Coulson M, Brettell R (2000) Development of DNA markers (ISSRs) in mango. Acta Hortic 575:139–143

    Google Scholar 

  • Gorji AM, Poczai P, Polgar Z et al (2011) Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Potato Res 88(3):226–237

    Article  Google Scholar 

  • Goulao L, Oliveira CM (2001) Molecular characterization of cultivars of apple (Malus × domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122:81–89

    Article  CAS  Google Scholar 

  • Grativol C, da Fonseca Lira-Medeiros C, Hemerly AS, Ferreira PCG (2011) High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Mol Biol Rep 38:4245–4256

    Article  CAS  Google Scholar 

  • Guasmi F, Elfalleh W, Hannachi H et al (2012) The use of ISSR and RAPD markers for genetic diversity among South Tunisian barley. ISrN Agronomy

  • Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89(5):627–636

    Article  CAS  Google Scholar 

  • Islam MS, Alam MS (2004) Randomly amplified polymorphic DNA analysis of four different populations of the Indian major carp, Labeo rohita (Hamilton). J Appl Ichthyol 20(5):407–412

    Article  CAS  Google Scholar 

  • Izzatullayeva V, Akparov Z, Babayeva S et al (2014) Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet. Turk J Biol 38(4):429–438

    Article  CAS  Google Scholar 

  • Jain KK (2002) Personalized medicine. Curr Opin Mol Ther 4:548–558

    CAS  Google Scholar 

  • Kapteyn J, Goldsbrough P, Simon J (2002) Genetic relationships and diversity of commercially relevant Echinacea species. Theor Appl Genet 105:369–376

    Article  CAS  Google Scholar 

  • Karimi HR, Abadi MHH, Kohbanani AM (2012) Genetic diversity of Pistacia khinjuk Stocks. using RAPD markers and leaf morphological characters. Plant Syst Evol 298(5):963–968

    Article  CAS  Google Scholar 

  • Khaled AGA, Motawea MH, Said AA (2015) Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. J Genet Eng Biotechnol 13(2):243–252

    Article  Google Scholar 

  • Khan S, Al-Qurainy F, Nadeem M (2012) Biotechnological approaches for conservation and improvement of rare and endangered plants of Saudi Arabia. Saudi J Biol Sci 19(1):1–11

    Article  CAS  Google Scholar 

  • Khurana-Kaul V, Kachhwaha S, Kothari SL (2012) Characterization of genetic diversity in Jatropha curcas L. germplasm using RAPD and ISSR markers. Indian J Biotechnol 11(1):54–61

    CAS  Google Scholar 

  • Laikre L, Allendorf FW, Aroner LC et al (2009) Neglect of genetic diversity in implementation of the conservation on biological diversity. Conserv Biol 24:86–88

    Article  Google Scholar 

  • Levi A, Thomas CE, Simmons AM, Thies JA (2005) Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and Cucumis species than with Praecitrullus fistulosus (Stocks) Pangalo. Genet Resour Crop Evol 52:465–472

    Article  CAS  Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca Raton

    Google Scholar 

  • Loarce Y, Gallego R, Ferrer E (1996) A comparative analysis of the genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica 88:107–115

    Article  Google Scholar 

  • Mahar KS, Rana TS, Ranade SA, Meena B (2011) Genetic variability and population structure in Sapindus emarginatus Vahl from India. Gene 485(1):32–39

    Article  CAS  Google Scholar 

  • Manohar SH, Murthy HN, Ravishankar KV (2013) Genetic diversity in a collection of Cucumis sativus L. assessed by RAPD and ISSR markers. J Plant Biochem Biotechnol 22(2):241–244

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • Moghaieb REA, Abdelhadi AA, El-Sadaw HA et al (2017) Molecular identification and genetic diversity among Photorhabdus and Xenorhabdus isolates. 3 Biotech 7(1):6

    Article  Google Scholar 

  • Mohsen H, Ali F (2008) Study of genetic polymorphism of Artemisia herba-alba from Tunisia using ISSR markers. Afr J Biotechnol 7(1):44–50

    CAS  Google Scholar 

  • Mujaju C, Sehic J, Werlemark G et al (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147(4):142–153

    Article  CAS  Google Scholar 

  • Muminovic J, Melchinger AE, Lubberstedt T (2004) Genetic diversity in corn salad (Valerianella locusta) and related species as determined by AFLP markers. Plant Breed 123:460–466

    Article  CAS  Google Scholar 

  • Naik A, Prajapat P, Krishnamurthy R et al (2017) Assessment of genetic diversity in Costus pictus accessions based on RAPD and ISSR markers. 3 Biotech 7:70

    Article  Google Scholar 

  • Nan P, Shi S, Peng S et al (2003) Genetic diversity in Primula obconica (Primulaceae) from Central and South-west China as revealed by ISSR markers. Ann Bot 91(3):329–333

    Article  Google Scholar 

  • Novot N, Sarfatti M, Zamir D (1990) Linkage relationship of genes affecting bitterness and flesh color in watermelon. J Hered 81:162–165

    Google Scholar 

  • Patel DM, Fougat RS, Sakure AA et al (2016) Detection of genetic variation in sandalwood using various DNA markers. 3 Biotech 6(1):1–11

    Google Scholar 

  • Penner GA (1996) RAPD analysis of plant genomes. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC, Boca Raton, pp 251–268

    Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato accessions. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Rao LS, Rani PU, Deshmukh PS et al (2007) RAPD and ISSR fingerprinting in cultivated chickpea (Cicer arietinum L.) and its wild progenitor Cicer reticulatum Ladizinsky. Genet Resour Crop Evol 54(6):1235–1244

    Article  CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237

    Article  Google Scholar 

  • Rohlf FJ (1998) NTSYSpc: numerical taxonomy and multivariate analysis system, version 2.02e. Exeter Software, Setauket

    Google Scholar 

  • Shah CS, Qadry JS (1985) A text book of pharmacognosy, 5th edn. B. S. Shah Prakashan, Ahmedabad, p 284

    Google Scholar 

  • Sharma R, Joshi A, Maloo SR et al (2012) Assessment of genetic finger printing using molecular marker in plants: a review. Sci Res Impact 1:29–36

    CAS  Google Scholar 

  • Singh AK, Smart J, Simpson CE et al (1998) Genetic variation vis-a-vis molecular polymorphism in groundnut, Arachis hypogaea L. Genet Resour Crop Evol 45:119–126

    Article  Google Scholar 

  • Singh S, Reddy SK, Jawali N (2012) Genetic diversity analyses of Mungbean (Vigna radiata [L]. Wilczek) by ISSR. Int J Plant Breed 6(2):73–83

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W H Freeman and Company, San Francisco

    Google Scholar 

  • Solmaz I, Sari N, Aka-Kacar Y et al (2010) The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genet Resour Crop Evol 57(5):763–771

    Article  CAS  Google Scholar 

  • Sreekumar VB, Renuka C (2006) Assessment of genetic diversity in Calamus thwaitesii BECC (Arecaceae) using RAPD markers. Biochem Syst Ecol 34:397–405

    Article  CAS  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217(3–4):313–332

    Article  CAS  Google Scholar 

  • Sturm SP, Schveider C, Seger SH (2009) Analysis of Citrullus colocynthis cucurbitacin derivatives with HPLC-SPE-NMR. Sci Pharm 77:254–257

    Article  Google Scholar 

  • Velasco-Ramirez AP, Torres-Moran MI, Molina-Moret S et al (2014) Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). Electron J Biotechnol 17(2):65–71

    Article  Google Scholar 

  • Verma VK, Behera TK, Munshi AD et al (2007) Genetic diversity of ash gourd [Benincasa hispida (Thunb.) Cogn.] inbred lines based on RAPD and ISSR markers and their hybrid performance. Sci Hortic 113(3):231–237

    Article  CAS  Google Scholar 

  • Verma KS, Kachhwaha S, Kothari SL (2013) In vitro plant regeneration of Citrullus colocynthis (L.) Schard. and assessment of genetic fidelity using ISSR and RAPD markers. Indian J Biotechnol 12:409–414

    CAS  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  Google Scholar 

  • Yadav K, Yadav SK, Yadav A et al (2014) Comparative analysis of genetic diversity among cultivated Pigeon pea (Cajanus cajan (L) Millsp.) and its wild relatives (C. albicans and C. lineatus) using randomly amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) fingerprinting. Am J Plant Sci 5(11):1665

    Article  Google Scholar 

  • Yap IV, Nelson RJ (1996) Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-Based dendrograms, IRRI Discussion Paper Series No. 14. International Rice Research Institute, Manila, Philippines

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to CSIR for financial support and for the award of SRF during Ph.D., Interdisciplinary Program in life Science (IPLS), University with Potential for Excellence Scheme by UGC (UPE Program), DRS-II, Dept. of Botany, Bioinformatics Infrastructure Facility (BIF) by DBT and University of Rajasthan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Kothari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, K.S., ul Haq, S., Kachhwaha, S. et al. RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 7, 288 (2017). https://doi.org/10.1007/s13205-017-0918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0918-z

Keywords

Navigation