Advertisement

Symbiosis

pp 1–9 | Cite as

How and why do endophytes produce plant secondary metabolites?

  • Sachin NaikEmail author
  • Ramanan Uma Shaanker
  • Gudasalamani Ravikanth
  • Selvadurai Dayanandan
Article
  • 68 Downloads

Abstract

Despite numerous studies reporting endophytic fungal production of metabolites chemically similar to the secondary metabolites produced by their host plants, how and why the fungi produce these metabolites remain largely unknown. Here, we review the literature on endophytic fungal production of taxol and camptothecin, two extensively studied plant secondary metabolites, and highlight critical gaps in our knowledge that need to be addressed to adequately answer the above questions. We show that detailed studies are required for conclusive demonstration of i) the production of these metabolites by the fungi, ii) the tolerance of the fungi to the produced cytotoxic metabolites, and iii) the adaptive significance of the metabolite production to the fungi. Although our focus is on two widely studied plant secondary metabolites produced by fungi, the questions addressed here are equally applicable to the production of a large number of other fungal metabolites that are similar to those produced by their host plants.

Keywords

Endophytic fungi Taxol Camptothecin Adaptive significance Biosynthesis 

Notes

Acknowledgements

The work reported here draws on research supported by the Department of Biotechnology, Government of India to Uma Shaanker. Sachin Naik and Selvadurai Dayanandan acknowledge the support from NSERC-Canada Discovery grant, and Uma Shaanker acknowledges Erasmus Mundus Travel Support to Uppsala University, Sweden.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52:189–196CrossRefGoogle Scholar
  2. Chakravarthi BVSK, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33:259–267CrossRefGoogle Scholar
  3. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59CrossRefGoogle Scholar
  4. Chithra S, Jasima B, Sachidanandanb P et al (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. S Phytomed 21:534–540CrossRefGoogle Scholar
  5. Choi HK, Kim SI, Song JY et al (2001) Localization of paclitaxel in suspension culture of Taxus chinensis. J Microbiol Biotechnol 11:458–462Google Scholar
  6. Chow SY, Williams HJ, Pennington JD, Nanda S, Reibenspies JH, Scott AI (2007) Studies on taxadiene synthase: interception of the cyclization cascade at the verticillene stage and rearrangement to phomactatriene. Tetrahedron 63:6204–6209CrossRefGoogle Scholar
  7. Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang KH, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL (2017) A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 13:895–901CrossRefGoogle Scholar
  8. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97CrossRefGoogle Scholar
  9. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920CrossRefGoogle Scholar
  10. Deng BW, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25:139–143CrossRefGoogle Scholar
  11. Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S, Kushwaha M, Gupta AP, Gandhi SG, Sharma JP, Taneja SC, Vishwakarma RA, Shah BA (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC-ESI-MS/MS analysis. Phytochemistry 98:183–189CrossRefGoogle Scholar
  12. Ding X, Liu K, Zhang Y, Liu F (2017) De novo transcriptome assembly and characterization of the 10-hydroxycamptothecin-producing Xylaria sp . M71 following salicylic acid treatment. J Microbiol 55:871–876CrossRefGoogle Scholar
  13. Eisenreich W, Menhardt B, Hylandst PJ et al (1996) Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci U S A 93:6431–6436CrossRefGoogle Scholar
  14. Elavarasi A, Rathna GS, Kalaiselvam M et al (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac J Trop Biomed 2:1081–1085CrossRefGoogle Scholar
  15. Gunawardena AHLAN, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:60–73CrossRefGoogle Scholar
  16. Guo B, Li H, Zhang L (1998) Isolation of the fungus producing vinblastine. J Yunnan Univ Nat Sci Edit 120:214–215Google Scholar
  17. Guo BH, Wang YC, Zhou XW et al (2006) An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr J Biotechnol 5:875–877Google Scholar
  18. Gurudatt PS, Priti V, Shweta S et al (2010) Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr Sci 98:1006–1010Google Scholar
  19. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170CrossRefGoogle Scholar
  20. Hu K, Tan F, Tang K et al (2006) Isolation and screening of endophytic fungi synthesizing taxol from Taxus chinensis var. mairei. J Southwest China Normal Univ Nat Sci Edit 31:134–137Google Scholar
  21. Kasaei A, Mobini DM, Mahjoubi F et al (2017) Isolation of Taxol-producing endophytic fungi from Iranian yew through novel molecular approach and their effects on human breast cancer cell line. Curr Microbiol 74:702–709CrossRefGoogle Scholar
  22. Kim SU, Strobel GA, Ford E (1999) Screening of taxol-producing endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea. Agric Chem Biotechnol 42:97–99Google Scholar
  23. Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121CrossRefGoogle Scholar
  24. Kumara PM, Zuehlke S, Priti V et al (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329CrossRefGoogle Scholar
  25. Kumara PM, Shweta S, Vasanthakumari MM, Sachin N, Manjunatha BL, Jadhav SS, Ravikanth G, Ganeshaiah KN, Shaanker RU (2014) Endophytes and plant secondary metabolite synthesis: molecular and evolutionary perspective. In: Vijay CV, Alan CG (eds) Advances in endophytic research. Springer, New Delhi, pp 177–190CrossRefGoogle Scholar
  26. Kumaran RS, Kim HJ, Hur BK (2010) Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng 110:541–546CrossRefGoogle Scholar
  27. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162CrossRefGoogle Scholar
  28. Kusari S, Lamshoft M, Spiteller M (2009a) Aspergillus fumgigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxy- podophyllotoxin. J Appl Microbiol 107:1019–1030CrossRefGoogle Scholar
  29. Kusari S, Zühlke S, Spiteller M (2009b) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7CrossRefGoogle Scholar
  30. Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant camptotheca acuminata and the fungal endophyte fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775CrossRefGoogle Scholar
  31. Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798CrossRefGoogle Scholar
  32. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefGoogle Scholar
  33. Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99:5383–5390CrossRefGoogle Scholar
  34. Kusari P, Kusari S, Eckelmann D, Zühlke S, Kayser O, Spiteller M (2016) Cross-species biosynthesis of maytansine in Maytenus serrata. RSC Adv 6:10011–10016CrossRefGoogle Scholar
  35. Li JY, Strobel GA, Sidhu R, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142:2223–2226CrossRefGoogle Scholar
  36. Li JY, Sidhu RS, Ford EJ, Long DM, Hess WM, Strobel GA (1998) The induction of taxol production in the endophytic fungus — Periconia sp from Torreya grandifolia. J Ind Microbiol Biotechnol 20:259–264CrossRefGoogle Scholar
  37. Li S, Zhang Z, Cain A, Wang B, Long M, Taylor J (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem 53:32–37CrossRefGoogle Scholar
  38. Li W, Zhou J, Lin Z et al (2007) Study on fermentation condition for production of huperzine A from endophytic fungus 2F09P03B of Huperzia serrata. Chin Med Biotechnol 2:254–259Google Scholar
  39. Lin X, Hezari M, Koepp AE, Floss HG, Croteau R (1996) Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol biosynthesis in Pacific yew. Biochemistry 35:2968–2977CrossRefGoogle Scholar
  40. Liu, Reinscheid (2004) Camptothecin-resistant fungal endophytes of Camptotheca acuminata. Mycol Prog 3:189–192CrossRefGoogle Scholar
  41. Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177CrossRefGoogle Scholar
  42. Lu L, He J, Yu X et al (2006) Studies on isolation and identification of endophytic fungi strain SC13 from pharmaceutical plant Sabina vulgaris Ant. and metabolites. Acta Agric. Boreal-Occident Sin 15:85–89Google Scholar
  43. Miao Z, Wang Y, Yu X, Guo B, Tang K (2009) A new endophytic taxane production fungus from Taxus chinensis. Appl Biochem Microbiol 45:81–86CrossRefGoogle Scholar
  44. Min CL, Wang XJ, Zhao MF, Chen WW (2014) Isolation of endophytic fungi from Macleaya cordata and screening of sanguinarine-producing strains. Zhongguo Zhong Yao Za Zhi 39:4288–4292Google Scholar
  45. Mousa WK, Shearer C, Limay-rios V et al (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 1:16167CrossRefGoogle Scholar
  46. Mu JH, Bollon AP, Sidhu RS (1999) Analysis of β-tubulin cDNAs from taxol-resistant Pestalotiopsis microspora and taxol-sensitive Pythium ultimum and comparison of the taxol-binding properties of their products. Mol Gen Genet 262:857–868CrossRefGoogle Scholar
  47. Nadeem M, Mauji R, Pravej A et al (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res 6:2493–2499Google Scholar
  48. Parthasarathy R, Sathiyabama M (2014) Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R. Br Appl Biochem Biotechnol 172:3141–3152CrossRefGoogle Scholar
  49. Priti V, Ramesha BT, Shweta S et al (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites. Curr Sci 97:477–478Google Scholar
  50. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719CrossRefGoogle Scholar
  51. Ran X, Zhang G, Li S, Wang J (2017) Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr Health Sci 17:566–574CrossRefGoogle Scholar
  52. Rehman S, Shawl AS, Kour A et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209CrossRefGoogle Scholar
  53. Ruiz-Sanchez J, Flores BZR, Dendooven L et al (2010) A comparative study of taxol production in liquid and solid- state fermentation with Nigrospora sp. a fungus isolated from Taxus globosa. J Appl Microbiol 109:2144–2150CrossRefGoogle Scholar
  54. Sachin N, Manjunatha BL, Mohana KP et al (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104:178–182Google Scholar
  55. Sarang H, Rajani P, Vasanthakumari M et al (2017) An endophytic fungus, Gibberella moniliformis from Lawsonia inermis L. produces lawsone, an orange-red pigment. Antonie Van Leeuwenhoek 110:853–862CrossRefGoogle Scholar
  56. Shi J, Zeng Q, Liu Y (2012) Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotechnol 95:369–379CrossRefGoogle Scholar
  57. Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Uma Shaanker R (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxy camptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122CrossRefGoogle Scholar
  58. Shweta S, Shivanna MB, Gurumurthy BR et al (2014) Inhibition of fungal endophytes by camptothecine produced by their host plant Nothapodytes nimmoniana ( Grahm ) Mabb . ( Icacinaceae ). Curr Sci 107:994–1000Google Scholar
  59. Sirikantaramas S, Sudo H, Asano T (2007) Transport of camptothecin in hairy roots of Ophiorrhiza pumila. J Phytochem 68:2881–2886CrossRefGoogle Scholar
  60. Sirikantaramas S, Yamazaki M, Saito K (2008) Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants. Proc Natl Acad Sci 105:6782–6786CrossRefGoogle Scholar
  61. Sirikantaramas S, Yamazaki M, Saito K (2014) How plants avoid the toxicity of self produced defense bioactive compounds. In: Osbourn A, Goss RJ, Carter GT (eds) Editors natural products: discourse, diversity, and design. Wiley, Hoboken, pp 67–82CrossRefGoogle Scholar
  62. Soliman SSM, Raizada MN (2013) Interactions between co-Habitating fungi elicit synthesis of Taxol from an endophytic fungus in host Taxus plants. Front Microbiol 4:3CrossRefGoogle Scholar
  63. Soliman SSM, Trobacher CP, Tsao R, Greenwood JS, Raizada MN (2013) A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol 13:93CrossRefGoogle Scholar
  64. Soliman SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN (2015) An endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol 25:2570–2576CrossRefGoogle Scholar
  65. Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomyces andreanae: a presumed paclitaxel producer demystified? Planta Med 75:1561–1566CrossRefGoogle Scholar
  66. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216CrossRefGoogle Scholar
  67. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus walli- chiana. Microbiology 142:435–440CrossRefGoogle Scholar
  68. Strobel GA, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B (1997) Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45:1073–1082CrossRefGoogle Scholar
  69. Su H, Kang J, Cao J et al (2014) Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J Sci 41:1–13Google Scholar
  70. Sugimoto Y, Tsukahara S, Oh-hara T, Liu LF, Tsuruo T (1990) Elevated expression of DNA topoisomerase II in camptothecin-resistant human tumor cell lines. Cancer Res 50:7962–7965Google Scholar
  71. Sun D, Ran X, Wang J (2008) Isolation and identification of a taxol- producing endophytic fungus from Podocarpus. Acta Microbiol Sin 48:589–595Google Scholar
  72. Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568CrossRefGoogle Scholar
  73. Suryanarayanan TS, Devarajan PT, Girivasan KP et al (2018) The host range of multi-host endophytic fungi. Curr Sci 115:1963–1969Google Scholar
  74. Tamam EE, Huzefa AR, Tyler NG et al (2014) Flavonolignans from Aspergillus iizukae, a fungal endophyte of Milk Thistle (Silybum marianum). J Nat Prod 77:193–199CrossRefGoogle Scholar
  75. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefGoogle Scholar
  76. Tian R, Yang Q, Zhou G et al (2006) Taxonomic study on a taxol producing fungus isolated from bark of Taxus chinensis var. mairei. J Wuhan Bot Res 24:541–545Google Scholar
  77. Vasanthakumari MM, Jadhav SS, Sachin N, Vinod G, Shweta S, Manjunatha BL, Kumara PM, Ravikanth G, Nataraja KN, Uma Shaanker R (2015) Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J Microbiol Biotechnol 31:1629–1639CrossRefGoogle Scholar
  78. Wagner LJ, Flores HE (1994) Effect of Taxol and related compounds on growth of plant pathogenic fungi. Phytopathology 84:1173–1178CrossRefGoogle Scholar
  79. Wang J, Lu H, Huang Y et al (1999) A taxol-producing endophytic fungus isolated from Taxus mairei and its antitumor activity. J Xiamen Univ Nat Sci Edit 38:485–487Google Scholar
  80. Wang Q, Fu Y, Gao J et al (2007) Preliminary isolation and screening of the endophytic fungi from Melia azedarach L. Acta Agric Boreal-Occident 16:224–227Google Scholar
  81. Wei Y, Zhou X, Liu L et al (2010) An efficient transformation system of taxol- producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 9:1726–1733CrossRefGoogle Scholar
  82. Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol 13:71CrossRefGoogle Scholar
  83. Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K (2003) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry 62:461–470CrossRefGoogle Scholar
  84. Yang X, Guo S, Zhang L et al (2003) Selection of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat Prod Res Dev 15:419–422Google Scholar
  85. Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R, Guo G, Chen L, Zhang Y, Huang X, Tang Q, Liu H, Bellgard MI, Qiu D, Lai J, Hoffman A (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 15:69CrossRefGoogle Scholar
  86. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307CrossRefGoogle Scholar
  87. Young DH, Michelotti EL, Swindell CS, Krauss NE (1992) Antifungal properties of taxol and various analogues research articles. Experientia 48:882–885CrossRefGoogle Scholar
  88. Zhang L, Gu S, Shao H et al (1999) Isolation determination and aroma product characterization of fungus producing irone. Mycosystema 18:49–54Google Scholar
  89. Zhang L, Guo B, Li H et al (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herbal Drug 31:805–807Google Scholar
  90. Zhang P, Zhou PP, Yu LJ (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59:227–232CrossRefGoogle Scholar
  91. Zhang Q, Wei X, Wang J (2012) Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspense. Fitoterapia 83:1500–1505CrossRefGoogle Scholar
  92. Zhao K, Zhao L, Jin Y et al (2008) Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 27:735–744Google Scholar
  93. Zhao J, Shan T, Mou Y et al (2011) Plant-derived bioactive compounds produced by endophytic fungi. Med Chem 11:159–168Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for Structural and Functional Genomics, Biology DepartmentConcordia UniversityMontrealCanada
  2. 2.Quebec Centre for Biodiversity SciencesMontrealCanada
  3. 3.Department of Crop PhysiologyUniversity of Agricultural SciencesBangaloreIndia
  4. 4.Ashoka Trust for Research in Ecology and the EnvironmentBangaloreIndia

Personalised recommendations