Skip to main content
Log in

Effect of pH on the thermal gelation of carob protein isolate

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The specific aim of this work was to study the capability of a carob protein isolate (CPI) to produce self-supporting gels when subjected to a thermal treatment. CPI aqueous dispersions (10, 20 and 30 wt% protein basis) at three different pH values (2, 6 and 10) were subjected to a heating/cooling process (95 °C–30 min/4 °C–24 h) leading to the formation of self-supporting gels. Those gels were characterized for dynamic rheological properties; water holding capacity (WHC); textural properties; extractability in different media; scanning electron microscopy; and SDS-PAGE profiles of the soluble proteins. The results demonstrated that self-supporting CPI gels can only be obtained at concentrations higher than 20 wt%, being favoured at extreme pH values, especially at alkaline pH. At pH 10, gels with higher dynamic elastic and hardness properties and appropriate WHC were formed due to the promotion of disulphide bonds formation. Thus, if higher rheological properties and hardness are required for thermally treated CPI gels, alkaline pH conditions that favour hydrophobic interactions and disulphide bonding should be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar JM, Batista AP, Nunes MC, Cordobes F, Raymundo A, Guerrero A (2011) From egg yolk/kappa-Carrageenan dispersions to gel systems: linear viscoelasticity and texture analysis. Food Hydrocoll 25:654–658

    Article  CAS  Google Scholar 

  • Avanza M, Añón MC (2007) Effect of thermal treatment on the proteins of amaranth isolates. J Sci Food Agric 87:616–623

    Article  CAS  Google Scholar 

  • Avanza M, Puppo MC, Añón MC (2005a) Structural characterization of amaranth protein gels. J Food Sci 70(3):E223–E229

    Article  CAS  Google Scholar 

  • Avanza M, Puppo MC, Añón MC (2005b) Rheological characterization of amaranth protein gels. Food Hydrocoll 19:889–898

    Article  CAS  Google Scholar 

  • Barnes HA (2003) A review of the rheology of filled viscoelastic systems. In Rheology reviews (United Kingdom, The British Society of Rheology), pp 1–36

  • Bengoechea C, Romero A, Villanueva A, Moreno G, Alaiz M, Millán F, Guerrero A, Puppo MC (2008) Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem 107:675–683

    Article  CAS  Google Scholar 

  • Beveridge T, Ko S (1984) Firmness of heat-induced whole egg coagulum. Poultry Sci 63:1372–1377

    Article  Google Scholar 

  • Beveridge T, Toma SJ, Nakai S (1974) Determination of SH-groups and SS-groups in some food proteins using Ellman’s reagent. J Food Sci 39:49–51

    Article  CAS  Google Scholar 

  • Bourne M (2002) Food texture and viscosity. Concept and measurement. Academic Press, Elsevier Science, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Campbell LJ, Gu X, Dewar SJ, Euston SR (2009) Effects of heat treatment and glucono-delta-lactone-induced acidification on characteristics of soy protein isolate. Food Hydrocoll 23:344–351

    Article  CAS  Google Scholar 

  • CBI Market Intelligence (2015) CBI Product Factsheet: Locust Bean Gum in Europe. The Netherlands

  • Damodaran S (1985) Estimation of disulfide bonds using 2-nitro-5-thiosulfobenzoic acid: limitations. Anal Biochem 145:200–204

    Article  CAS  Google Scholar 

  • Errington AD, Foegeding EA (1998) Factors determining fracture stress and strain of fine-stranded whey protein gels. J Agric Food Chem 46:2963–2967

    Article  CAS  Google Scholar 

  • Gerrard JA (2002) Protein-protein crosslinking in food: methods, consequences, applications. Trends Food Sci Tech 13:391–399

    Article  CAS  Google Scholar 

  • Handa A, Takahashi K, Kuroda N, Froning GW (1998) Heat-induced egg white gels as affected by pH. J Food Sci 63:403–407

    Article  CAS  Google Scholar 

  • Hayakawa S, Nakai S (1985) Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins. J Food Sci 50:486–491

    Article  CAS  Google Scholar 

  • Ikeda S, Foegeding EA (1999) Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin. Food Hydrocoll 13:245–254

    Article  CAS  Google Scholar 

  • Jansens KJA, Lagrain B, Brijs K, Goderis B, Smet M, Delcour JA (2013) Impact of acid and alkaline pretreatments on the molecular network of wheat gluten and on the mechanical properties of compression-molded glassy wheat gluten bioplastics. J Agric Food Chem 61:9393–9400

    Article  CAS  Google Scholar 

  • Kehoe JJ, Foegeding EA (2014) The characteristics of heat-induced aggregates formed by mixtures of beta-lactoglobulin and beta-casein. Food Hydrocoll 39:264–271

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680

    Article  CAS  Google Scholar 

  • Manoj P, Kasapis S, Hember MWN (1997) Sequence-dependent kinetic trapping of biphasic structures in maltodextrin-whey protein gels. Carbohyd Polym 32:141–153

    Article  CAS  Google Scholar 

  • Matthews BW (2001) Hydrophobic Interactions in Proteins. In eLS. Wiley, Chichester, pp 1–6

  • Nunes MC, Batista P, Raymundo A, Alves MM, Sousa I (2003) Vegetable proteins and milk puddings. Colloid Surf B 31:21–29

    Article  CAS  Google Scholar 

  • Plaut M, Zelbuch B, Guggenbheim K (1953) Nutritive and baking properties of carob germ flour. Bull Res Counc Isr 3:3

    Google Scholar 

  • Puppo MC, Añon MC (1998a) Effect of pH and protein concentration on rheological behavior of acidic soybean protein gels. J Agric Food Chem 46:3039–3046

    Article  CAS  Google Scholar 

  • Puppo MC, Añon MC (1998b) Structural properties of heat-induced soy protein gels as affected by ionic strength and pH. J Agric Food Chem 46:3583–3589

    Article  CAS  Google Scholar 

  • Puppo MC, Añon MC (1999) Rheological properties of acidic soybean protein gels: salt addition effect. Food Hydrocoll 13:167–176

    Article  CAS  Google Scholar 

  • Puppo MC, Lupano CE, Anon MC (1995) Gelation of soybean protein isolates in acidic conditions—effect of pH and protein-concentration. J Agric Food Chem 43:2356–2361

    Article  CAS  Google Scholar 

  • Quéguiner C, Dumay E, Cavalier C, Cheftel J (1989) Reduction of Streptococcus thermophilus in a whey protein isolate by low moisture extrusion cooking without loss of funcional properties. Int J Food Sci Technol 24:601–612

    Article  Google Scholar 

  • Rafe A, Razavi SMA (2013) The effect of pH and calcium ion on rheological behaviour of β-lactoglobulin-basil seed gum mixed gels. Int J Food Sci Tech 48:1924–1931

    Article  CAS  Google Scholar 

  • Rafe A, Razavi SMA, Khan S (2012) Rheological and structural properties of beta-lactoglobulin and basil seed gum mixture: effect of heating rate. Food Res Int 49:32–38

    Article  CAS  Google Scholar 

  • Renkema JMS, van Vliet T (2002) Heat-induced gel formation by soy proteins at neutral pH. J Agric Food Chem 50:1569–1573

    Article  CAS  Google Scholar 

  • Renkema JMS, Lakemond CMM, de Jongh HHJ, Gruppen H, van Vliet T (2000) The effect of pH on heat denaturation and gel forming properties of soy proteins. J Biotechnol 79:223–230

    Article  CAS  Google Scholar 

  • Romero A, Bengoechea C, Cordobés F, Guerrero A (2009a) Application of thermal treatments to enhance gel strength and stability of highly concentrated crayfish-based emulsions. Food Hydrocoll 23:2346–2353

    Article  CAS  Google Scholar 

  • Romero A, Cordobes F, Puppo MC, Villanueva A, Pedroche J, Guerrero A (2009b) Linear viscoelasticity and microstructure of heat-induced crayfish protein isolate gels. Food Hydrocoll 23:964–972

    Article  CAS  Google Scholar 

  • Shevkani K, Singh N, Kaur A, Chand Rana J (2015) Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocoll 43:679–689

    Article  CAS  Google Scholar 

  • Shimada K, Cheftel JC (1988) Texture characteristics, protein solubility, and sulfhydryl-group disulfide bond contents of heat-induced gels of whey-protein isolate. J Agric Food Chem 36:1018–1025

    Article  CAS  Google Scholar 

  • Thannhauser TW, Konishi Y, Scheraga HA (1984) Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anal Biochem 138:181–188

    Article  CAS  Google Scholar 

  • Tsatsaragkou K, Gounaropoulos G, Mandala I (2014) Development of gluten free bread containing carob flour and resistant starch. LWT-Food Sci Technol 58:124–129

    Article  CAS  Google Scholar 

  • Uruakpa FO, Arntfield SD (2005) The physico-chemical properties of commercial canola protein isolate-guar gum gels. Int J Food Sci Tech 40:643–653

    Article  CAS  Google Scholar 

  • Wang YL, Belton PS, Bridon H, Garanger E, Wellner N, Parker ML, Grant A, Feillet P, Noel TR (2001) Physicochemical studies of caroubin: a gluten-like protein. J Agric Food Chem 49:3414–3419

    Article  CAS  Google Scholar 

  • Wu C, Yuan C, Chen S, Liu D, Ye X, Hu Y (2015) The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel. Food Chem 179:222–231

    Article  CAS  Google Scholar 

  • Zárate LS, Bengoechea C, Cordobés F, Guerrero A (2010) Linear viscoelasticity of carob protein isolate/locust bean gum blends. J Food Eng 100:435–445

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Ministerio de Investigación, Desarrollo e Innovación of Spain under the project AGL2007-65709 and José Castillejo Mobility Program (JC2007-00047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bengoechea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengoechea, C., Ortiz, S.E.M., Guerrero, A. et al. Effect of pH on the thermal gelation of carob protein isolate. J Food Sci Technol 54, 153–163 (2017). https://doi.org/10.1007/s13197-016-2447-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2447-x

Keywords

Navigation