Skip to main content
Log in

Analysis of genetic diversity and population structure of confectionery sunflower (Helianthus annuus L.) native to Iran

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Genetic diversity within and among 50 populations of confectionery sunflower (Helianthus annuus L.) collected from different geographical areas of Iran was evaluated by using microsatellite and retrotransposon markers. The number of alleles (Na) in SSR loci ranged from 2 to 3 with an average of 2.1. The polymorphic bands in retrotransposon markers ranged from 7 in locus CR-UR1 to 15 in locus CR-816 with a mean value of 11.33. Herarchical clustering of individuals (50 × 5 = 250) by neighbor joining method in DARwin5 software subdivided them into three groups. Using Bayesian method in the software pakage of Structure, the studied individuals were subdivided into two sub-populations. Principal coordinate analysis revelaed that the two first components explaine 7.86 and 6.16% of the total variance, respectively. Analysis of molecular variance revealed a higher level of genetic variation within (70%) than between (30%) populations. High molecular variation among individuals within population possibly is due to high allogamy nature of the sunflower plant. Low genetic variation observed between populations could be considered as a consequence of genetic equilibrium that has occurred over the long period of cultivation of confectionery sunflower in this area as well as seed exchange among regions. The traditional assumption that selecting genotypes of different geographical origin will maximize the diversity available to a breeding project does not hold in confectionery sunflower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi Mandoulakani B, Piri Y, Darvishzadeh R, Bernoosi I, Jafari M. 2012. Retroelement insertional polymorphism and genetic diversity in medicago sativa populations revealed by IRAP and REMAP markers. Plant Mol. Biol. Rep. 30: 286–296.

    Article  CAS  Google Scholar 

  • Agrama HA, Tuinstra MR. 2003. Phylogenetic diversity and relationship among sorghum accessions using SSRs and RAPDs. Afr. J. Biotechnol. 2(10): 334–340

    Article  CAS  Google Scholar 

  • Basirnia A, Darvishzadeh R, Abdollahi Mandoulakani B. 2014a. Retrotransposon insertional polymorphism in sunflower (Helianthus annuus L.) lines revealed by IRAP and REMAP markers. Plant Biosystems, DOI: 10.1080/11263504.2014.970595

    Google Scholar 

  • Basirnia A, Darvishzadeh R, Abdollahi Mandoulakani B, Nabipur A. 2014b. Assessment of genomic diversity in confectionery sunflower populations (Helianthus annuus L.) by using retrotransposon based IRAP markers. Journal of Agricultural Biotechnology 6(1): 19–34

    Google Scholar 

  • Binneck E, Nedel JL, Dellagostin OA. 2002. RAPD analysis on cultivar identification: a useful methodology? Rev. Bras. Sem. 24: 183–196

    Google Scholar 

  • Choudhury DR, Singh N, Singh AK, Kumar S, Srinivasan K, Tyagi RK, Ahmad A, Singh NK, Singh R. 2014. Analysis of genetic diversity and population structure of rice germplasm from northeastern region of India and development of a core germplasm set. PLOS ONE 9: e113094

    Article  Google Scholar 

  • Dong GJ, Liu GS, Li KF. 2007. Studying genetic diversity in the core germplasm of confectionary sunflower (Helianthus annuus L.) in China based on AFLP and morphological analysis. Russ. J. Genet. 43: 627–635

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14. 2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Garcia AAF, Benchimol LL, Barbosa AMM, Geraldi IO. 2004. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet. Mol. Biol. 27: 579–588

    Article  CAS  Google Scholar 

  • Goncalves LS, Rodrigues R, Junior AT, Karasawa M. 2009. Heirloom tomato gene bank: assessing genetic divergence based on morphological, agronomic and molecular data using a Ward-modified location model. Genet. Mol. Res. 8: 364–374

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder MS, Gautier MF, Schlatter AS, Dubcovsky J, Delapena RC. 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet. 105: 413–422

    Article  CAS  PubMed  Google Scholar 

  • Halton TA. 2001. Plant genotyping by analysis of microsatellite In R. J. Henry (Ed). Plant genotyping, The DNA fingerprinting of plant. Pp: 15–29, CABI Publication, New York, USA

    Google Scholar 

  • He F, Kang D, Ren Y, Qu LJ, Zhen Y, Gu H. 2007. Genetic diversity of the natural populations of Arabidopsis thaliana in China. Heredity 99: 423–431

    Article  CAS  PubMed  Google Scholar 

  • Heiser CB. 1954. Variation and subspeciation in the common sunflower, Helianthus annuus. Am. Midl. Nat. 51: 287–305

    Article  Google Scholar 

  • Hogbin PM, Peakall R. 1999. Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Conserv. Biol. 13. 514–522

    Article  Google Scholar 

  • Hvarleva Tz, Bakalova A, Chepinski I, Hristov M, Atanasov A. 2007. Characterization of Bulgarian sunflower cultivars and inbred lines with microsatellite markers. Biotechnol. Biotechnol. Equip. 21: 408–412

    Article  Google Scholar 

  • Kholghi M, Darvishzadeh R, Bernousi I, Pirzad A, Laurentin H. 2012. Assessment of genomic diversity among and within Iranian confectionery sunflower (Helianthus annuus L.) populations by using simple sequence repeat markers. Acta. Agric. Scand. Sect. B -Soil Plant Sci. 62: 488–498

    Google Scholar 

  • Langridge PE, Lagudah S, Holton TA, Appels R, Sharp PJ, Chalmers KJ. 2001. Trends in genetic and genome analyses in wheat: A review. Aust. J. Agric. Res. 52: 1043–1077

    Article  CAS  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA. 2009. Assessing plant genetic diversity by molecular tools. Diversity 1: 19–35

    Article  CAS  Google Scholar 

  • Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, Macisaac HJ. 2008. Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol. Ecol. 17: 1020–1035

    CAS  PubMed  Google Scholar 

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. PLoS Genetics 2: e190

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE. 2006. GenAlEx 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288–295

    Article  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ. 1996. The Tyl-copia group of Retrotrans posons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 205: 305–315

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP. 2006. DARwin software. http://darwin.cirad.fr/darwin

    Google Scholar 

  • Poormohammad Kiani S, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A. 2007. Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci. 172. 773–787 Pritchard, Stephens, Donnelly 2000. STRUCTURE, Code by Pritchard, Falush and Hubisz. Version 2.3.4 (July 2012)

    Article  Google Scholar 

  • Reif JC, Gumpert F, Fischer S, Melchiger AE. 2007. Impact of genetic divergence on additive and dominance variance in hybrid populations. Genetics 176: 1931–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roder MS, Victor K, Wendehake ZK, Plaschke J, Tixier MH, Leroy P, Ganal MW. 1998. A microsatellite map of wheat. Genetics 149: 2007–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf FJ. 2004. NTSYS-pc ver 2.11T. Exter Software, Setauket, New York.

    Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW. 2002. The genetic structure of human populations. Science 298: 2381–2385

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for econstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    CAS  PubMed  Google Scholar 

  • Saker MM, Youssef SS, Abdallah NA, Bashandy HS. 2005. Genetic analysis of some Egyptian rice genotypes using RAPD, SSR and AFLP. Afr. J. Biotechnol. 4: 882–890

    CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z. and Bennetzen J L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P. 2000. A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10: 908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snowdon RJ, Fried W. 2004. Molecular markers in Brassica oilseed breeding, current status and future possibilities. Plant Breed. 123: 1–8

    Article  CAS  Google Scholar 

  • Solomon KF, Labuschagne MT, Viljoen CD. 2007. Estimates of heterosis and association of genetic distace with heterosis in durum wheat under different moisture regimes. J. Agric. Sci. 145. 239–248

    Article  Google Scholar 

  • Souza SGH, Carpentieri-Pípolo V, Ruas CF, Carvalho VP. 2008. Comparative analysis of genetic diversity among the maize inbred lines (Zea mays L.) obtained by studying genetic relationships in Lactuca spp. Theor. Appl. Genet. 93: 1202–1210

    Google Scholar 

  • Tang S, Knapp SJ. 2003. Microsatellites uncover extraordinary diversity in Native American land races and wild populations of cultivated sunflower. Theor. Appl. Genet. 106: 990–1003

    CAS  PubMed  Google Scholar 

  • Tang S, Yu J-K, Slabaugh MB, Shintani DK, Knapp SJ. 2002. Simple sequence repeat map of the sunflower genome. Theor. Appl. Genet. 105: 1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Vukich M, Achulman H, Giordani T, Natali L, Kalendar R, Cavallini A. 2009. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor. Appl. Genet. 119: 1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Zhang LS, Le Clerc V, Zhang D, Li S. 2005. Establishment of an effective set of simple sequence repeat markers for sunflower variety identification and diversity assessment. Can. J. Bot. 83: 66–72

    Article  CAS  Google Scholar 

  • Zia ZU, Sadaqat HA, Tahir MHN, Sadia B, Bushman BS, Hole D, Michaels L, Malik W. 2014. Estimation of genetic diversity using SSR markers in sunflower. Russ. J. Genet. 50: 498–507

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Darvishzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannatdoust, M., Darvishzadeh, R., Ziaeifard, R. et al. Analysis of genetic diversity and population structure of confectionery sunflower (Helianthus annuus L.) native to Iran. J. Crop Sci. Biotechnol. 19, 37–44 (2016). https://doi.org/10.1007/s12892-015-0052-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-015-0052-6

Keywords

Navigation