Skip to main content

Advertisement

Log in

Rapidly Microwave-Synthesized SnO2 Nanorods Anchored on Onion-Like Carbons (OLCs) as Anode Material for Lithium-Ion Batteries

  • Original Paper
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Nanostructured SnO2/onion-like carbon (OLC) composites were fabricated via a facile and rapid microwave-assisted synthesis technique. The influence of SnO2 nanorods anchored on OLC was investigated as an anode material for the first time in lithium-ion battery applications. The OLC successfully served as a barrier layer between SnO2 nanorods and electrolyte to avoid the rupturing of the unstable SEI layer in order to provide improved coulombic efficiency, ionic resistance, and electronic conductivity. The SnO2 nanorod-OLC nanocomposite exhibits much stable and better electrochemical performance than pure SnO2 nanorods. The SnO2-OLC composite exhibited a remarkably high specific capacity of 884 mAh g−1 after 100 cycles with long-term cycling stability and excellent capacity retention of 93.5% (at current density of 100 mA g−1) with only 0.23% fading per cycle. The outstanding performance is attributed to the high surface area of OLC which can enhance electron transportation and high lithium-ion diffusion during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Du, T. Yang, J. Lin, T. Feng, J. Zhu, L. Lu, Y. Xu, J. Wang, Microwave-assisted synthesis of SnO2@ polypyrrole nanotubes and their pyrolyzed composite as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8(24), 15598–15606 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Y. Wang, J.Y. Lee, Microwave-assisted synthesis of SnO2–graphite nanocomposites for Li-ion battery applications. J. Power Sources 144(1), 220–225 (2005)

    Article  CAS  Google Scholar 

  3. M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. G. Du, C. Zhong, P. Zhang, Z. Guo, Z. Chen, H. Liu, Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim. Acta 55(7), 2582–2586 (2010)

    Article  CAS  Google Scholar 

  5. F.M. Courtel, E.A. Baranova, Y. Abu-Lebdeh, I.J. Davidson, In situ polyol-assisted synthesis of nano-SnO2/carbon composite materials as anodes for lithium-ion batteries. J. Power Sources 195(8), 2355–2361 (2010)

    Article  CAS  Google Scholar 

  6. Z.P. Guo, G.D. Du, Y. Nuli, M.F. Hassan, H.K. Liu, Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: A highly efficient anode material for lithium-ion batteries. J. Mater. Chem. 19(20), 3253–3257 (2009)

    Article  CAS  Google Scholar 

  7. M. Park, Y. Kang, G. Wang, S. Dou, H. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18(3), 455–461 (2008)

    Article  CAS  Google Scholar 

  8. M. Park, G. Wang, Y. Kang, D. Wexler, S. Dou, H. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in Lithium-ion batteries. Angew. Chem. 119(5), 764–767 (2007)

    Article  Google Scholar 

  9. Y. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 21(14), 3202–3209 (2009)

    Article  CAS  Google Scholar 

  10. B. Das, M. Reddy, G.S. Rao, B. Chowdari, Nano-phase tin hollandites, K2(M2Sn6)O16 (M= Co, In) as anodes for Li-ion batteries. J. Mater. Chem. 21(4), 1171–1180 (2011)

    Article  CAS  Google Scholar 

  11. P. Nithyadharseni, M. Reddy, K.I. Ozoemena, R.G. Balakrishna, B. Chowdari, Low temperature molten salt synthesis of Y2Sn2O7 anode material for lithium ion batteries. Electrochim. Acta 182, 1060–1069 (2015)

    Article  CAS  Google Scholar 

  12. P. Nithyadharseni, M. Reddy, B. Nalini, T. Ravindran, B. Pillai, M. Kalpana, B. Chowdari, Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries. Mater. Res. Bull. 70, 478–485 (2015)

    Article  CAS  Google Scholar 

  13. Y. Wang, J.Y. Lee, Molten salt synthesis of tin oxide nanorods: Morphological and electrochemical features. J. Phys. Chem. B 108(46), 17832–17837 (2004)

    Article  CAS  Google Scholar 

  14. D. Kim, I. Hwang, S.J. Kwon, H. Kang, K. Park, Y. Choi, K. Choi, J. Park, Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7(10), 3041–3045 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. D. Kim, D. Lee, J. Kim, J. Moon, Electrospun Ni-added SnO2–carbon nanofiber composite anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 4(10), 5408–5415 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. J. Cheng, B. Wang, M. Zhao, F. Liu, X. Zhang, Nickel-doped tin oxide hollow nanofibers prepared by electrospinning for acetone sensing. Sensors Actuators B Chem. 190, 78–85 (2014)

    Article  CAS  Google Scholar 

  17. Z. Yang, Q. Meng, Z. Guo, X. Yu, T. Guo, R. Zeng, Highly uniform TiO2/SnO2/carbon hybrid nanofibers with greatly enhanced lithium storage performance. J. Mater. Chem. A 1(35), 10395–10402 (2013)

    Article  CAS  Google Scholar 

  18. Z. Yang, G. Du, C. Feng, S. Li, Z. Chen, P. Zhang, Z. Guo, X. Yu, G. Chen, S. Huang, Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochim. Acta 55(19), 5485–5491 (2010)

    Article  CAS  Google Scholar 

  19. L. Yuan, J. Wang, S.Y. Chew, J. Chen, Z. Guo, L. Zhao, K. Konstantinov, H. Liu, Synthesis and characterization of SnO2–polypyrrole composite for lithium-ion battery. J. Power Sources 174(2), 1183–1187 (2007)

    Article  CAS  Google Scholar 

  20. P. Wu, N. Du, H. Zhang, J. Yu, D. Yang, CNTs@ SnO2@ C coaxial nanocables with highly reversible lithium storage. J. Phys. Chem. C 114(51), 22535–22538 (2010)

    Article  CAS  Google Scholar 

  21. K. Makgopa, P.M. Ejikeme, C.J. Jafta, K. Raju, M. Zeiger, V. Presser, K.I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3(7), 3480–3490 (2015)

    Article  CAS  Google Scholar 

  22. J. Liu, D. Choi, R. Kou, Z. Nie, D. Wang, Z. Yang, Self assembled multi-layer nanocomposite of graphene and metal oxide materials. (2014)

  23. I.A. Courtney, J. Dahn, Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144(6), 2045–2052 (1997)

    Article  CAS  Google Scholar 

  24. M. Torabi, S. Sadrnezhaad, Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries. J. Power Sources 196(1), 399–404 (2011)

    Article  CAS  Google Scholar 

  25. Y.G. Zhu, Y. Wang, J. Xie, G. Cao, T. Zhu, X. Zhao, H.Y. Yang, Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application. Electrochim. Acta 154, 338–344 (2015)

    Article  CAS  Google Scholar 

  26. A. Birrozzi, R. Raccichini, F. Nobili, M. Marinaro, R. Tossici, R. Marassi, High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries. Electrochim. Acta 137, 228–234 (2014)

    Article  CAS  Google Scholar 

  27. X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun, Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22(8), 1647–1654 (2012)

    Article  CAS  Google Scholar 

  28. J. Zhu, D. Wang, L. Wang, X. Lang, W. You, Facile synthesis of sulfur coated SnO2–graphene nanocomposites for enhanced lithium ion storage. Electrochim. Acta 91, 323–329 (2013)

    Article  CAS  Google Scholar 

  29. H. Zhang, H. Song, X. Chen, J. Zhou, H. Zhang, Preparation and electrochemical performance of SnO2@ carbon nanotube core–shell structure composites as anode material for lithium-ion batteries. Electrochim. Acta 59, 160–167 (2012)

    Article  CAS  Google Scholar 

  30. C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50(5), 1897–1903 (2012)

    Article  CAS  Google Scholar 

  31. Y. Wu, M. Reddy, B. Chowdari, S. Ramakrishna, Long-term cycling studies on electrospun carbon nanofibers as anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5(22), 12175–12184 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. J. Yu, Y. Xia, Facile synthesis of the SnO2@ OCNTs (open-tips carbon nano tubes) composite with superior cyclability for Li-ion batteries. Electrochim. Acta 147, 720–725 (2014)

    Article  CAS  Google Scholar 

  33. Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, P. Zhang, G. Chen, H. Liu, Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties. J. Mater. Res. 25(08), 1516–1524 (2010)

    Article  CAS  Google Scholar 

  34. X. Lu, F. Yang, X. Geng, P. Xiao, Enhanced cyclability of amorphous carbon-coated SnO2-graphene composite as anode for Li-ion batteries. Electrochim. Acta 147, 596–602 (2014)

    Article  CAS  Google Scholar 

  35. W. Li, D. Yoon, J. Hwang, W. Chang, J. Kim, One-pot route to synthesize SnO2-reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. J. Power Sources 293, 1024–1031 (2015)

    Article  CAS  Google Scholar 

  36. R. Wang, C. Xu, J. Sun, L. Gao, H. Yao, Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl. Mater. Interfaces 6(5), 3427–3436 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. J. Wang, H. Zhao, X. Liu, J. Wang, C. Wang, Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries. Electrochim. Acta 56(18), 6441–6447 (2011)

    Article  CAS  Google Scholar 

  38. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132, 46–47 (2009)

    Article  CAS  Google Scholar 

  39. J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang, J. Geng, Fluorine-doped SnO2@ graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 27(13), 4594–4603 (2015)

    Article  CAS  Google Scholar 

  40. M.F. Hassan, M.M. Rahman, Z. Guo, Z. Chen, H. Liu, SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 20(43), 9707–9712 (2010)

    Article  CAS  Google Scholar 

  41. D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T. Sham, X. Sun, Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries. J. Phys. Chem. C 116(42), 22149–22156 (2012)

    Article  CAS  Google Scholar 

  42. M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 21(6), 1673–1676 (2011)

    Article  CAS  Google Scholar 

  43. K. Chang, W. Chen, H. Li, H. Li, Microwave-assisted synthesis of SnS2/SnO2 composites by l-cysteine and their electrochemical performances when used as anode materials of Li-ion batteries. Electrochim. Acta 56(7), 2856–2861 (2011)

    Article  CAS  Google Scholar 

  44. Y. Zou, Y. Wang, Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem. Eng. J. 229, 183–189 (2013)

    Article  CAS  Google Scholar 

  45. C. Tan, S. Zhao, G. Yang, S. Hu, X. Qin, Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics 21(4), 987–994 (2015)

    Article  CAS  Google Scholar 

  46. M. Reddy, G.S. Rao, B. Chowdari, Nano-(V1/2Sb1/2Sn)O4: A high capacity, high rate anode material for Li-ion batteries. J. Mater. Chem. 21(27), 10003–10011 (2011)

    Article  CAS  Google Scholar 

  47. M. Reddy, B.L. Wei Wen, K.P. Loh, B. Chowdari, Energy storage studies on InVO4 as high performance anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(16), 7777–7785 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. P. Nithyadharseni, M. Reddy, B. Nalini, P. Saravanan, V. Vinod, M. Černík, B. Chowdari, Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies. J. Solid State Electrochem. 20(6), 1743–1751 (2016)

    Article  CAS  Google Scholar 

  49. G.Q. Zhang, W. Li, H. Yang, Y. Wang, S.B. Rapole, Y. Cao, C. Zheng, K. Ding, Z. Guo, Influence of preparation conditions on the properties of lithium titanate fabricated by a solid-state method. J. New Mater. Electrochem. Syst. 16, 25 (2013)

    Article  CAS  Google Scholar 

  50. C. Li, Y. Chen, B. Wei, K. Ding, Y. Zhang, X. Shi, Jinming Zhou, A novel composite anode material of Si-SnO2-graphene prepared in air for lithium ion batteries. Int. J. Electrochem. Sci. 12, 11701–11714 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

We are highly grateful for CSIR for the financial support of this work. CSIR is a partner in the CREATe-Network program funded by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin A. Kebede.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaniyandy, N., Kebede, M.A., Ozoemena, K.I. et al. Rapidly Microwave-Synthesized SnO2 Nanorods Anchored on Onion-Like Carbons (OLCs) as Anode Material for Lithium-Ion Batteries. Electrocatalysis 10, 314–322 (2019). https://doi.org/10.1007/s12678-019-0508-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-0508-4

Keywords

Navigation