Rapidly Microwave-Synthesized SnO2 Nanorods Anchored on Onion-Like Carbons (OLCs) as Anode Material for Lithium-Ion Batteries

  • Nithyadharseni Palaniyandy
  • Mesfin A. KebedeEmail author
  • Kenneth I. Ozoemena
  • Mkhulu K. Mathe
Original Paper


Nanostructured SnO2/onion-like carbon (OLC) composites were fabricated via a facile and rapid microwave-assisted synthesis technique. The influence of SnO2 nanorods anchored on OLC was investigated as an anode material for the first time in lithium-ion battery applications. The OLC successfully served as a barrier layer between SnO2 nanorods and electrolyte to avoid the rupturing of the unstable SEI layer in order to provide improved coulombic efficiency, ionic resistance, and electronic conductivity. The SnO2 nanorod-OLC nanocomposite exhibits much stable and better electrochemical performance than pure SnO2 nanorods. The SnO2-OLC composite exhibited a remarkably high specific capacity of 884 mAh g−1 after 100 cycles with long-term cycling stability and excellent capacity retention of 93.5% (at current density of 100 mA g−1) with only 0.23% fading per cycle. The outstanding performance is attributed to the high surface area of OLC which can enhance electron transportation and high lithium-ion diffusion during cycling.

Graphical Abstract


OLC SnO2 nanorods SEI layer Capacity Electrochemical impedance spectroscopy 



We are highly grateful for CSIR for the financial support of this work. CSIR is a partner in the CREATe-Network program funded by the European Commission.


  1. 1.
    X. Du, T. Yang, J. Lin, T. Feng, J. Zhu, L. Lu, Y. Xu, J. Wang, Microwave-assisted synthesis of SnO2@ polypyrrole nanotubes and their pyrolyzed composite as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8(24), 15598–15606 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, J.Y. Lee, Microwave-assisted synthesis of SnO2–graphite nanocomposites for Li-ion battery applications. J. Power Sources 144(1), 220–225 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)CrossRefGoogle Scholar
  4. 4.
    G. Du, C. Zhong, P. Zhang, Z. Guo, Z. Chen, H. Liu, Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim. Acta 55(7), 2582–2586 (2010)CrossRefGoogle Scholar
  5. 5.
    F.M. Courtel, E.A. Baranova, Y. Abu-Lebdeh, I.J. Davidson, In situ polyol-assisted synthesis of nano-SnO2/carbon composite materials as anodes for lithium-ion batteries. J. Power Sources 195(8), 2355–2361 (2010)CrossRefGoogle Scholar
  6. 6.
    Z.P. Guo, G.D. Du, Y. Nuli, M.F. Hassan, H.K. Liu, Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: A highly efficient anode material for lithium-ion batteries. J. Mater. Chem. 19(20), 3253–3257 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Park, Y. Kang, G. Wang, S. Dou, H. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18(3), 455–461 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Park, G. Wang, Y. Kang, D. Wexler, S. Dou, H. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in Lithium-ion batteries. Angew. Chem. 119(5), 764–767 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 21(14), 3202–3209 (2009)CrossRefGoogle Scholar
  10. 10.
    B. Das, M. Reddy, G.S. Rao, B. Chowdari, Nano-phase tin hollandites, K2(M2Sn6)O16 (M= Co, In) as anodes for Li-ion batteries. J. Mater. Chem. 21(4), 1171–1180 (2011)CrossRefGoogle Scholar
  11. 11.
    P. Nithyadharseni, M. Reddy, K.I. Ozoemena, R.G. Balakrishna, B. Chowdari, Low temperature molten salt synthesis of Y2Sn2O7 anode material for lithium ion batteries. Electrochim. Acta 182, 1060–1069 (2015)CrossRefGoogle Scholar
  12. 12.
    P. Nithyadharseni, M. Reddy, B. Nalini, T. Ravindran, B. Pillai, M. Kalpana, B. Chowdari, Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries. Mater. Res. Bull. 70, 478–485 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, J.Y. Lee, Molten salt synthesis of tin oxide nanorods: Morphological and electrochemical features. J. Phys. Chem. B 108(46), 17832–17837 (2004)CrossRefGoogle Scholar
  14. 14.
    D. Kim, I. Hwang, S.J. Kwon, H. Kang, K. Park, Y. Choi, K. Choi, J. Park, Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7(10), 3041–3045 (2007)CrossRefGoogle Scholar
  15. 15.
    D. Kim, D. Lee, J. Kim, J. Moon, Electrospun Ni-added SnO2–carbon nanofiber composite anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 4(10), 5408–5415 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Cheng, B. Wang, M. Zhao, F. Liu, X. Zhang, Nickel-doped tin oxide hollow nanofibers prepared by electrospinning for acetone sensing. Sensors Actuators B Chem. 190, 78–85 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Yang, Q. Meng, Z. Guo, X. Yu, T. Guo, R. Zeng, Highly uniform TiO2/SnO2/carbon hybrid nanofibers with greatly enhanced lithium storage performance. J. Mater. Chem. A 1(35), 10395–10402 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Yang, G. Du, C. Feng, S. Li, Z. Chen, P. Zhang, Z. Guo, X. Yu, G. Chen, S. Huang, Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochim. Acta 55(19), 5485–5491 (2010)CrossRefGoogle Scholar
  19. 19.
    L. Yuan, J. Wang, S.Y. Chew, J. Chen, Z. Guo, L. Zhao, K. Konstantinov, H. Liu, Synthesis and characterization of SnO2–polypyrrole composite for lithium-ion battery. J. Power Sources 174(2), 1183–1187 (2007)CrossRefGoogle Scholar
  20. 20.
    P. Wu, N. Du, H. Zhang, J. Yu, D. Yang, CNTs@ SnO2@ C coaxial nanocables with highly reversible lithium storage. J. Phys. Chem. C 114(51), 22535–22538 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Makgopa, P.M. Ejikeme, C.J. Jafta, K. Raju, M. Zeiger, V. Presser, K.I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3(7), 3480–3490 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Liu, D. Choi, R. Kou, Z. Nie, D. Wang, Z. Yang, Self assembled multi-layer nanocomposite of graphene and metal oxide materials. (2014)Google Scholar
  23. 23.
    I.A. Courtney, J. Dahn, Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144(6), 2045–2052 (1997)CrossRefGoogle Scholar
  24. 24.
    M. Torabi, S. Sadrnezhaad, Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries. J. Power Sources 196(1), 399–404 (2011)CrossRefGoogle Scholar
  25. 25.
    Y.G. Zhu, Y. Wang, J. Xie, G. Cao, T. Zhu, X. Zhao, H.Y. Yang, Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application. Electrochim. Acta 154, 338–344 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Birrozzi, R. Raccichini, F. Nobili, M. Marinaro, R. Tossici, R. Marassi, High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries. Electrochim. Acta 137, 228–234 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun, Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22(8), 1647–1654 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Zhu, D. Wang, L. Wang, X. Lang, W. You, Facile synthesis of sulfur coated SnO2–graphene nanocomposites for enhanced lithium ion storage. Electrochim. Acta 91, 323–329 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Zhang, H. Song, X. Chen, J. Zhou, H. Zhang, Preparation and electrochemical performance of SnO2@ carbon nanotube core–shell structure composites as anode material for lithium-ion batteries. Electrochim. Acta 59, 160–167 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50(5), 1897–1903 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Wu, M. Reddy, B. Chowdari, S. Ramakrishna, Long-term cycling studies on electrospun carbon nanofibers as anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5(22), 12175–12184 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Yu, Y. Xia, Facile synthesis of the SnO2@ OCNTs (open-tips carbon nano tubes) composite with superior cyclability for Li-ion batteries. Electrochim. Acta 147, 720–725 (2014)CrossRefGoogle Scholar
  33. 33.
    Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, P. Zhang, G. Chen, H. Liu, Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties. J. Mater. Res. 25(08), 1516–1524 (2010)CrossRefGoogle Scholar
  34. 34.
    X. Lu, F. Yang, X. Geng, P. Xiao, Enhanced cyclability of amorphous carbon-coated SnO2-graphene composite as anode for Li-ion batteries. Electrochim. Acta 147, 596–602 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Li, D. Yoon, J. Hwang, W. Chang, J. Kim, One-pot route to synthesize SnO2-reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. J. Power Sources 293, 1024–1031 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Wang, C. Xu, J. Sun, L. Gao, H. Yao, Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl. Mater. Interfaces 6(5), 3427–3436 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Wang, H. Zhao, X. Liu, J. Wang, C. Wang, Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries. Electrochim. Acta 56(18), 6441–6447 (2011)CrossRefGoogle Scholar
  38. 38.
    C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132, 46–47 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang, J. Geng, Fluorine-doped SnO2@ graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 27(13), 4594–4603 (2015)CrossRefGoogle Scholar
  40. 40.
    M.F. Hassan, M.M. Rahman, Z. Guo, Z. Chen, H. Liu, SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 20(43), 9707–9712 (2010)CrossRefGoogle Scholar
  41. 41.
    D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T. Sham, X. Sun, Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries. J. Phys. Chem. C 116(42), 22149–22156 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 21(6), 1673–1676 (2011)CrossRefGoogle Scholar
  43. 43.
    K. Chang, W. Chen, H. Li, H. Li, Microwave-assisted synthesis of SnS2/SnO2 composites by l-cysteine and their electrochemical performances when used as anode materials of Li-ion batteries. Electrochim. Acta 56(7), 2856–2861 (2011)CrossRefGoogle Scholar
  44. 44.
    Y. Zou, Y. Wang, Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem. Eng. J. 229, 183–189 (2013)CrossRefGoogle Scholar
  45. 45.
    C. Tan, S. Zhao, G. Yang, S. Hu, X. Qin, Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics 21(4), 987–994 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Reddy, G.S. Rao, B. Chowdari, Nano-(V1/2Sb1/2Sn)O4: A high capacity, high rate anode material for Li-ion batteries. J. Mater. Chem. 21(27), 10003–10011 (2011)CrossRefGoogle Scholar
  47. 47.
    M. Reddy, B.L. Wei Wen, K.P. Loh, B. Chowdari, Energy storage studies on InVO4 as high performance anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(16), 7777–7785 (2013)CrossRefGoogle Scholar
  48. 48.
    P. Nithyadharseni, M. Reddy, B. Nalini, P. Saravanan, V. Vinod, M. Černík, B. Chowdari, Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies. J. Solid State Electrochem. 20(6), 1743–1751 (2016)CrossRefGoogle Scholar
  49. 49.
    G.Q. Zhang, W. Li, H. Yang, Y. Wang, S.B. Rapole, Y. Cao, C. Zheng, K. Ding, Z. Guo, Influence of preparation conditions on the properties of lithium titanate fabricated by a solid-state method. J. New Mater. Electrochem. Syst. 16, 25 (2013)CrossRefGoogle Scholar
  50. 50.
    C. Li, Y. Chen, B. Wei, K. Ding, Y. Zhang, X. Shi, Jinming Zhou, A novel composite anode material of Si-SnO2-graphene prepared in air for lithium ion batteries. Int. J. Electrochem. Sci. 12, 11701–11714 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Energy Centre, Council for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
  2. 2.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations