BioNanoScience

, Volume 5, Issue 4, pp 196–205 | Cite as

Cola nitida-Mediated Biogenic Synthesis of Silver Nanoparticles Using Seed and Seed Shell Extracts and Evaluation of Antibacterial Activities

  • A. Lateef
  • M. A. Azeez
  • T. B. Asafa
  • T. A. Yekeen
  • A. Akinboro
  • I. C. Oladipo
  • F. E. Ajetomobi
  • E. B. Gueguim-Kana
  • L. S. Beukes
Article

Abstract

In this study, seed and seed shell extracts of Cola nitida were investigated for the biogenic synthesis of silver nanoparticles (AgNPs) under ambient condition. The biosynthesized AgNPs were characterized through visual development of colour, UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The antibacterial activities of the AgNPs were determined using some multidrug-resistant clinical isolates. The biosynthesized AgNPs depicted brown and yellowish orange colour using seed and seed extract, respectively, with maximum absorbance readings at 457.5 and 454.5 nm. The FTIR spectrum showed strong peaks at 3292.49, 2086.98 and 1631.78 cm−1 for seed extract-mediated AgNPs, while peaks of 3302.13, 2086.05 and 1633.71 cm−1 were obtained for seed shell extract-mediated AgNPs, all indicating that proteins were the capping and stabilization molecules in the biogenic synthesis of AgNPs. The AgNPs were spherical in shape with sizes ranging from 8 to 50 and 5 to 40 nm for seed and seed shell-mediated AgNPs, respectively. The energy-dispersive X-ray (EDX) analysis showed the presence of silver as a prominent metal, while the selected area electron diffraction (SAED) pattern conformed to the face-centred cubic phase and crystalline nature of AgNPs. At various concentrations ranging from 50–150 μg/ml, the AgNPs inhibited growth of multidrug-resistant strains of Klebsiella granulomatis, Pseudomonas aeruginosa and Escherichia coli to the tune of 10–32 mm. Comparatively, seed shell extract-mediated AgNPs had better activities with minimum inhibitory concentration (MIC) of 50 μg/ml against all the tested isolates, while the MICs of seed extract-mediated AgNPs were obtained as 50, 80 and 120 μg/ml against E. coli, P. aeruginosa (wound) and P. aeruginosa (burn), respectively. This study has demonstrated the feasibility of eco-friendly biogenic synthesis of AgNPs using seed and seed shell extracts of C. nitida, and the report to the best of our knowledge is the first reference to extracts of C. nitida for the green synthesis of AgNPs.

Keywords

Cola nitida Seed Seed shell Silver nanoparticles Antibacterial Multidrug resistance 

Notes

Acknowledgments

AL thanked authority of LAUTECH, Ogbomoso, Nigeria, for the provision of some of the facilities used in this study.

References

  1. 1.
    Lateef, A., Adelere, I. A., Gueguim-Kana, E. B. (2015). Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnology and Biotechnological Equipment, 29, 54–63.CrossRefGoogle Scholar
  2. 2.
    Lateef, A., Adelere, I. A., Gueguim-Kana, E. B. (2015). The biology and potential biotechnological applications of Bacillus safensis. Biologia, 70, 411–419.CrossRefGoogle Scholar
  3. 3.
    Lateef, A., Adelere, I. A., Gueguim-Kana, E. B., Asafa, T. B., Beukes, L. S. (2015). Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. International Nano Letters, 5, 29–35.CrossRefGoogle Scholar
  4. 4.
    Lateef, A., Ojo, S.A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Gueguim-Kana, E.B., Beukes, L.S. (2015). Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Applied Nanoscience, doi:  10.1007/s13204-015-0492-9.
  5. 5.
    Salem, W. M., Haridy, M., Sayed, W. F., Hassan, N. H. (2014). Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Industrial Crops and Products, 62, 228–234.CrossRefGoogle Scholar
  6. 6.
    Shivaji, S., Madhu, S., Singh, S. (2011). Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry, 46, 1800–1807.CrossRefGoogle Scholar
  7. 7.
    Augustine, R., Kalarikkal, N., Thomas, S. (2014). A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Applied Nanoscience, 4, 809–818.CrossRefGoogle Scholar
  8. 8.
    Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an ecofriendly approach. Industrial Crops and Products, 58, 238–243.CrossRefGoogle Scholar
  9. 9.
    Mishra, A., Kumari, M., Pandey, S., Chaudhry, V., Gupta, K. C., Nautiyal, C. S. (2014). Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresource Technology, 166, 235–242.CrossRefGoogle Scholar
  10. 10.
    Nazeruddin, G. M., Prasad, N. R., Prasad, S. R., Shaikh, Y. I., Waghmare, S. R., Adhyapak, P. (2014). Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Industrial Crops and Products, 60, 212–216.CrossRefGoogle Scholar
  11. 11.
    Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G., et al. (2014). Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Applied Nanoscience, 4, 881–888.CrossRefGoogle Scholar
  12. 12.
    El-Batal, A. I., ElKenawya, N. M., Yassin, A. S., Amin, M. A. (2015). Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnology Reports, 5, 31–39.CrossRefGoogle Scholar
  13. 13.
    Yallappa, S., Manjanna, J., Dhananjaya, B. L. (2015). Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 236–243.CrossRefGoogle Scholar
  14. 14.
    Agharkar, M., Kochrekar, S., Hidouri, S., Azeez, M. A. (2014). Trends in green reduction of graphene oxides, issues and challenges: a review. Material Research Bulletin, 59, 323–328.CrossRefGoogle Scholar
  15. 15.
    Akinoso, R., Aremu, A. K., Balogun, I. S. (2014). Some physical properties of kola nuts—a response surface approach. International Agrophysics, 28, 251–255.CrossRefGoogle Scholar
  16. 16.
    Odebode, A. C. (1996). Phenolic compounds in the kola nut (Cola nitida and Cola acuminata) (Sterculiaceae) in Africa. Revista de Biología Tropical, 44, 513–515.Google Scholar
  17. 17.
    Asogwa, E. U., Anikwe, J. C., Ihokwunye, F. C. (2006). Kola production and utilization for economic development. African Scientist, 7, 4–5.Google Scholar
  18. 18.
    Dewole, E. A., Dewumi, D. F. A., Alabi, J. Y. T., Adegoke, A. (2013). Proximate and phytochemical of Cola nitida and Cola acuminata. Pakistan Journal of Biological Science, 2013, 1–4.Google Scholar
  19. 19.
    Jarvis, G. (2002). The rise and fall of cocaine cola. https://www.lewrockwell.com/2002/05/gail-jarvis/the-rise-and-fall-of-cocaine-cola/ (2002). Accessed 25 April, 2015.
  20. 20.
    Lowe, H. I. C., Watson, C. T., Badal, S., Peart, P., Toyang, N. J., Bryant, J. (2014). Promising efficacy of the Cola acuminata plant: a mini review. Advances in Biological Chemistry, 4, 240–245.CrossRefGoogle Scholar
  21. 21.
    Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Anthony, S. (2009). Agroforestry tree database: a tree reference and selection guide version 4.0 (http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp). Accessed on 19 June, 2015.
  22. 22.
    Edison, T. J. I., & Sethuraman, M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47, 1351–1357.CrossRefGoogle Scholar
  23. 23.
    Muniyappan, N., & Nagarajan, N. S. (2014). Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochemistry, 49, 1054–1061.CrossRefGoogle Scholar
  24. 24.
    Kumar, S. S., Venkateswarlu, P., Rao, V. R., Rao, G. N. (2013). Synthesis, characterization and optical properties of zinc oxide nanoparticles. International Nano Letters, 3, 30–36.CrossRefGoogle Scholar
  25. 25.
    Rajeshkumar, S., Ponnanikajamideen, M., Malarkodi, C., Malini, M., Annadurai, G. (2014). Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. Journal of Nanostructure and Chemistry, 4, 96–102.CrossRefGoogle Scholar
  26. 26.
    Gopinath, K., Venkatesh, K. S., Ilangovan, R., Sankaranarayanan, K., Arumugam, A. (2013). Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Industrial Crops and Products, 50, 737–742.CrossRefGoogle Scholar
  27. 27.
    Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvam, P. T., Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 103–109.CrossRefGoogle Scholar
  28. 28.
    Niraimathi, K. L., Sudha, V., Lavanya, R., Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: Biointerfaces, 102, 288–291.CrossRefGoogle Scholar
  29. 29.
    Khanna, A. S. (2008). Nanotechnology in high performance paint coatings. Asian Journal of Experimental Science, 21(2), 25–32.Google Scholar
  30. 30.
    Cho, K. H., Park, J. E., Osaka, T., Park, S. G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51, 956–960.CrossRefGoogle Scholar
  31. 31.
    Mahendra, R., Alka, Y., Aniket, G. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83.CrossRefGoogle Scholar
  32. 32.
    Bhat, R., Deshpande, R., Ganachari, S. V., Huh, D. O., Venkataraman, A. (2011). Photo-irradiated bio-synthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorganic Chemistry and Applications, 2011, 1–7.CrossRefGoogle Scholar
  33. 33.
    Lateef, A., Davies, T. E., Adelekan, A., Adelere, I. A., Adedeji, A. A., Fadahunsi, A. H. (2010). Akara Ogbomoso: microbiological examination and identification of hazards and critical control points. Food Science and Technology International, 16, 389–400.CrossRefGoogle Scholar
  34. 34.
    Lateef, A., Ojo, M.O. (2015). Public health issues in the processing of cassava (Manihot esculenta) for the production of ‘lafun’ and the application of hazard analysis control measures. Quality Assurance and Safety of Crops and Foods, doi:  10.3920/QAS2014.0476.
  35. 35.
    Chortyk, T. O., Severson, R. F., Cutler, H. C., Siesson, V. A. (1993). Antibiotic activities of sugar esters isolated from selected Nicotiana species. Bioscience Biotechnology and Biochemistry, 57, 1355–1356.CrossRefGoogle Scholar
  36. 36.
    Andrews, J. M. (2005). BSAC standardized disc susceptibility testing method (version 4). Journal of Antimicrobial Chemotheraphy, 56, 60–76.CrossRefGoogle Scholar
  37. 37.
    Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Material Letters, 62, 4411–4413.CrossRefGoogle Scholar
  38. 38.
    Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., et al. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939–943.CrossRefGoogle Scholar
  39. 39.
    Thirumurugan, A., Tomy, N. A., Kumar, H. P., Prakash, P. (2011). Biological synthesis of silver nanoparticles by Lantana camara leaf extracts. International Journal of Nanomaterials and Biostructure, 1(2), 22–24.Google Scholar
  40. 40.
    Zaki, S., El-Kady, M. F., Abd-El-Haleem, D. (2011). Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Material Research Bulletin, 46, 1571–1576.CrossRefGoogle Scholar
  41. 41.
    Kannan, R. R. R., Arumugam, R., Ramya, D., Manivannan, K., Anantharaman, P. (2013). Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Applied Nanoscience, 3, 229–233.CrossRefGoogle Scholar
  42. 42.
    Priyadarshini, S., Gopinath, V., Priyadharsshini, N. M., Ali, D. M., Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its application. Colloids and Surfaces B: Biointerfaces, 102, 232–237.CrossRefGoogle Scholar
  43. 43.
    Shankar, S., Jaiswal, L., Aparna, R. S. L., Prasad, V. (2014). Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Material Letters, 137, 75–78.CrossRefGoogle Scholar
  44. 44.
    Shameli, K., Ahmad, M. B., Zargar, M., Wan Yunus, W. M. Z., Ibrahim, N. A., Sha-banzadeh, P., et al. (2011). Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. International Journal of Nanomedicine, 6, 271–284.CrossRefGoogle Scholar
  45. 45.
    Adewoye, S. O., & Lateef, A. (2004). Assessment of the microbiological quality of Clarias gariepinus exposed to an industrial effluent in Nigeria. The Environmentalist, 24, 249–254.CrossRefGoogle Scholar
  46. 46.
    Lateef, A. (2004). The microbiology of a pharmaceutical effluent and its public health implications. World Journal of Microbiology and Biotechnology, 20, 167–171.CrossRefGoogle Scholar
  47. 47.
    Lateef, A., Oloke, J. K., Gueguim-Kana, E. B. (2004). Antimicrobial resistance of bacterial strains isolated from orange juice products. African Journal of Biotechnology, 3, 334–338.CrossRefGoogle Scholar
  48. 48.
    Lateef, A., Oloke, J. K., Gueguim-Kana, E. B. (2005). The prevalence of bacterial resistance in clinical, food, water and some environmental samples in Southwest Nigeria. Environmental Monitoring and Assessment, 100, 59–69.CrossRefGoogle Scholar
  49. 49.
    Lateef, A., Oloke, J. K., Gueguim-Kana, E. B., Pacheco, E. (2006). The microbiological quality of ice used to cool drinks and foods in Ogbomoso Metropolis, Southwest, Nigeria. Internet Journal of Food Safety, 8, 39–43.Google Scholar
  50. 50.
    Lateef, A., Yekeen, T. A., Ufuoma, P. E. (2007). Bacteriology and genotoxicity of some pharmaceutical wastewaters in Nigeria. International Journal of Environmental Health, 1(4), 551–562.CrossRefGoogle Scholar
  51. 51.
    Lateef, A., & Yekeen, T. A. (2006). Microbial attributes of a pharmaceutical effluent and its genotoxicity on Allium cepa. International Journal of Environmental Studies, 63(5), 534–536.Google Scholar
  52. 52.
    Kanmani, P., & Lim, S. T. (2013). Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochemistry, 48, 1099–1106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Lateef
    • 1
    • 6
  • M. A. Azeez
    • 1
    • 6
  • T. B. Asafa
    • 2
    • 6
  • T. A. Yekeen
    • 1
    • 6
  • A. Akinboro
    • 1
    • 6
  • I. C. Oladipo
    • 3
    • 6
  • F. E. Ajetomobi
    • 1
  • E. B. Gueguim-Kana
    • 4
  • L. S. Beukes
    • 5
  1. 1.Department of Pure and Applied BiologyLadoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Department of Mechanical EngineeringLadoke Akintola University of TechnologyOgbomosoNigeria
  3. 3.Department of Science Laboratory TechnologyLadoke Akintola University of TechnologyOgbomosoNigeria
  4. 4.Department of MicrobiologySchool of Life Sciences, University of KwaZulu-NatalScottsvilleSouth Africa
  5. 5.Microscopy and Microanalysis Unit, School of Life SciencesUniversity of KwaZulu-NatalScottsvilleSouth Africa
  6. 6.Nanotechnology Research Group (NANO+)LAUTECHOgbomosoNigeria

Personalised recommendations