Skip to main content

Advertisement

Log in

Epi/perineural and Schwann Cells as Well as Perineural Sheath Integrity are Affected Following 2,4-D Exposure

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

2,4-dicholorophenoxy acetic acid (2,4-D) is a worldwide-known hormone herbicide. However, there are increasing concerns about its exposure and risks of developing pathological conditions for the peripheral nervous system. The aim of this study was to investigate the mechanism(s) involved in the toxicity of 2,4-D on peripheral nerve’s cellular components. The epi/perineural and Schwann cells and a total of three cell lines were treated with 2,4-D. The viability of cells at different doses of 2,4-D was measured by MTT assay. The cell cycle analyses, cumulative cell counting, fluorescent staining, antioxidant and caspase enzymes activity were examined on epi/perineural and Schwann cells. The epi/perineural cells were assessed as having biological macromolecular changes. Some tight junction-related genes and proteins were also tested on explants of 2,4-D treated epi/perineural tissue. The viability of 2,4-D treated cells was reduced in a dose-dependent manner. Reduced growth rate and G1 cell cycle arrest were verified in 2,4-D treated epi/perineural and Schwann cells. The use of staining methods (acridine orange/ethidium bromide and DAPI) and caspase 3/7 activity assay along with malondialdehyde, glutathione peroxidase, and superoxide dismutase activity assays indicated the apoptotic and oxidant effects of 2,4-D on epi/perineural and Schwann cells. Data obtained from FTIR revealed changes in epi/perineural proteins and cell membrane lipids. Additionally, claudin-1, occludin, and ZO-1 gene/protein expression profiles were significantly reduced in 2,4-D-treated epi/perineural pieces. Our data indicated that oxidative stress, apoptosis of epi/perineural and Schwann cell and impaired blood-nerve barrier may have contributed to nerve damage following 2,4-D exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M (2014) Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One 9:e110003. doi:10.1371/journal.pone.0110003

    Article  PubMed  PubMed Central  Google Scholar 

  • Areti A, Yerra VG, Naidu V, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295. doi:10.1016/j.redox.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashtarinezhad A, Panahyab A, Shaterzadeh-Oskouei S, Khoshniat H, Mohamadzadehasl B, Shirazi FH (2016) Teratogenic study of phenobarbital and levamisole on mouse fetus liver tissue using biospectroscopy. J Pharm Biomed Anal 128:174–183. doi:10.1016/j.jpba.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  • Bendfeldt K, Radojevic V, Kapfhammer J, Nitsch C (2007) Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood-brain barrier. J Neurosci 27:3260–3267. doi:10.1523/JNEUROSCI.4033-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Blom CL, Martensson LB, Dahlin LB (2014) Nerve injury-induced c-Jun activation in Schwann cells is JNK independent. Biomed Res Int 2014:392971. doi:10.1155/2014/392971

    PubMed  Google Scholar 

  • Bohlooli S, Bohlooli S, Aslanian R, Nouri F, Teimourzadeh A (2015) Aqueous extract of Agrostemma githago seed inhibits caspase-3 and induces cell-cycle arrest at G1 phase in AGS cell line. J Ethnopharmacol 175:295–300. doi:10.1016/j.jep.2015.07.010

    Article  PubMed  Google Scholar 

  • Bongiovanni B, De Lorenzi P, Ferri A, Konjuh C, Rassetto M, de Evangelista Duffard AM, Cardinali DP, Duffard R (2007) Melatonin decreases the oxidative stress produced by 2,4-dichlorophenoxyacetic acid in rat cerebellar granule cells. Neurotox Res 11:93–99

    Article  CAS  PubMed  Google Scholar 

  • Bongiovanni B, Ferri A, Brusco A, Rassetto M, Lopez LM, Evangelista de Duffard AM, Duffard R (2011) Adverse effects of 2,4-dichlorophenoxyacetic acid on rat cerebellar granule cell cultures were attenuated by amphetamine. Neurotox Res 19:544–555. doi:10.1007/s12640-010-9188-9

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brusco A, Saavedra JP, Garcia G, Tagliaferro P, de Evangelista Duffard AM, Duffard R (1997) 2,4-dichlorophenoxyacetic acid through lactation induces astrogliosis in rat brain. Mol Chem Neuropathol 30:175–185

    Article  CAS  PubMed  Google Scholar 

  • Bukowska B (2003) Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol Toxicol Pharmacol 135:435–441

    Article  Google Scholar 

  • Castagnoli C, Alotto D, Cambieri I, Casimiri R, Aluffi M, Stella M, Alasia ST, Magliacani G (2003) Evaluation of donor skin viability: fresh and cryopreserved skin using tetrazolioum salt assay. Burns 29:759–767

    Article  PubMed  Google Scholar 

  • Dakhakhni TH, Raouf GA, Qusti SY (2016) Evaluation of the toxic effect of the herbicide 2, 4-D on rat hepatocytes: an FT-IR spectroscopic study. Eur Biophys J 45:311–320. doi:10.1007/s00249-015-1097-7

    Article  CAS  PubMed  Google Scholar 

  • Das PC, McElroy WK, Cooper RL (2001) Alteration of catecholamines in pheochromocytoma (PC12) cells in vitro by the metabolites of chlorotriazine herbicide. Toxicol Sci 59:127–137

    Article  CAS  PubMed  Google Scholar 

  • De Moliner KL, de Evangelista Duffard AM, Soto E, Duffard R, Adamo AM (2002) Induction of apoptosis in cerebellar granule cells by 2,4-dichlorophenoxyacetic acid. Neurochem Res 27:1439–1446

    Article  PubMed  Google Scholar 

  • Eckersley L (2002) Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol 50:293–321

    Article  CAS  PubMed  Google Scholar 

  • Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884. doi:10.1083/jcb.200802081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawzy El-Sayed KM, Dorfer CE (2016) Gingival mesenchymal stem/progenitor cells: a unique tissue engineering. Gem Stem Cells Int 2016:7154327. doi:10.1155/2016/7154327

    PubMed  Google Scholar 

  • Fernandez-Pol JA (2016) Pheochromocytoma PC-12 cell line: the herbicide picloram enhances neurite growth induced by nerve growth factor. Austin J Proteomics Bioinform Genomics 3

  • Ferri A, Duffard R, de Duffard AM (2007) Selective oxidative stress in brain areas of neonate rats exposed to 2,4-Dichlorophenoxyacetic acid through mother’s milk. Drug Chem Toxicol 30:17–30. doi:10.1080/01480540601017629

    Article  CAS  PubMed  Google Scholar 

  • Ganguli A, Choudhury D, Chakrabarti G (2014) 2,4-Dichlorophenoxyacetic acid induced toxicity in lung cells by disruption of the tubulin-microtubule network. Toxicol Res 3:118–130. doi:10.1039/C3TX50082A

    Article  CAS  Google Scholar 

  • Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569. doi:10.1152/physrev.00019.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackel D, Brack A, Fromm M, Rittner HL (2012) Modulation of tight junction proteins in the perineurium for regional pain control. Ann N Y Acad Sci 1257:199–206. doi:10.1111/j.1749-6632.2012.06499.x

    Article  CAS  PubMed  Google Scholar 

  • Hervonen H, Elo HA, Ylitalo P (1982) Blood-brain barrier damage by 2-methyl-4-chlorophenoxyacetic acid herbicide in rats. Toxicol Appl Pharmacol 65:23–31

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Williams RE (2002) A quantitative analysis of perineurial cell basement membrane collagen IV, laminin and fibronectin in diabetic and non-diabetic human sural nerve. J Anat 201:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humpel C (2015) Organotypic brain slice cultures: a review. Neuroscience 305:86–98. doi:10.1016/j.neuroscience.2015.07.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesuraj NJ, Santosa KB, Macewan MR, Moore AM, Kasukurthi R, Ray WZ, Flagg ER, Hunter DA, Borschel GH, Johnson PJ, Mackinnon SE, Sakiyama-Elbert SE (2014) Schwann cells seeded in acellular nerve grafts improve functional recovery. Muscle Nerve 49:267–276. doi:10.1002/mus.23885

    Article  CAS  PubMed  Google Scholar 

  • Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131:5599–5612. doi:10.1242/dev.01429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouri G, Theophilidis G (2002) The action of the herbicide 2,4-dichlorophenoxyacetic acid on the isolated sciatic nerve of the frog (Rana ridibunda). Neurotox Res 4:25–32. doi:10.1080/10298420290007583

    Article  CAS  PubMed  Google Scholar 

  • Kucenas S (2015) Perineurial glia. Cold Spring Harb Perspect Biol:7. doi:10.1101/cshperspect.a020511

  • Li S, Xu D, Guo J, Sun Y (2015) Inhibition of cell growth and induction of inflammation by endosulfan in HUVEC-C cells environmental toxicology doi:10.1002/tox.22180

  • Lioni M, Brafford P, Andl C, Rustgi A, El-Deiry W, Herlyn M, Smalley KS (2007) Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells. Am J Pathol 170:709–721. doi:10.2353/ajpath.2007.060343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu XT, Ma Y, Wang C, Zhang XF, Jin DQ, Huang CJ (2012) Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E. J Environ Sci Health B 47:445–454. doi:10.1080/03601234.2012.663312

    Article  CAS  PubMed  Google Scholar 

  • Mizisin AP, Weerasuriya A (2011) Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol 121:291–312. doi:10.1007/s00401-010-0783-x

    Article  CAS  PubMed  Google Scholar 

  • Mohaddes G, Abdolalizadeh J, Babri S, Hossienzadeh F (2017) Ghrelin ameliorates blood-brain barrier disruption during systemic hypoxia. Exp Physiol 102:376–382. doi:10.1113/EP086068

    Article  CAS  PubMed  Google Scholar 

  • Murwani R, Armati P (1998) Peripheral nerve fibroblasts as a source of IL-6, TNFalpha and IL-1 and their modulation by IFNgamma. J Neurol Sci 161:99–109

    Article  CAS  PubMed  Google Scholar 

  • Nakbi A, Tayeb W, Grissa A, Issaoui M, Dabbou S, Chargui I, Ellouz M, Miled A, Hammami M (2010) Effects of olive oil and its fractions on oxidative stress and the livers fatty acid composition in 2,4-dichlorophenoxyacetic acid-treated rats. Nutr Metab 7:80. doi:10.1186/1743-7075-7-80

    Article  Google Scholar 

  • Niapour N, Mohammadi-Ghalehbin B, Golmohammadi MG, Gholami MR, Amani M, Niapour A (2015a) An efficient system for selection and culture of Schwann cells from adult rat peripheral nerves. Cytotechnology. doi:10.1007/s10616-014-9810-4

  • Niapour N, Niapour A, Sheikhkanloui Milan H, Amani M, Salehi H, Najafzadeh N, Gholami MR (2015b) All trans retinoic acid modulates peripheral nerve fibroblasts viability and apoptosis. Tissue Cell 47:61–65. doi:10.1016/j.tice.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  • Pina-Oviedo S, Ortiz-Hidalgo C (2008) The normal and neoplastic perineurium: a review. Adv Anat Pathol 15:147–164. doi:10.1097/PAP.0b013e31816f8519

    Article  PubMed  Google Scholar 

  • Pochettino AA, Bongiovanni B, Duffard RO, de Evangelista Duffard AM (2013) Oxidative stress in ventral prostate, ovary, and breast by 2,4-dichlorophenoxyacetic acid in pre- and postnatal exposed rats. Environ Toxicol 28:1–10. doi:10.1002/tox.20690

    Article  CAS  PubMed  Google Scholar 

  • Raouf GA, Qusti SY, Ali AM, Dakhakhni TH (2012) The mechanism of 2, 4-dichlorophenoxyacetic acid neurotoxicity on rat brain tissue by using FTIR spectroscopy. Life Sci J 9:1686–1697

    Google Scholar 

  • Reinhold AK, Rittner HL (2017) Barrier function in the peripheral and central nervous system—a review. Pflugers Arch 469:123–134. doi:10.1007/s00424-016-1920-8

    Article  CAS  PubMed  Google Scholar 

  • Rosso SB, Caceres AO, de Duffard AM, Duffard RO, Quiroga S (2000) 2,4-Dichlorophenoxyacetic acid disrupts the cytoskeleton and disorganizes the Golgi apparatus of cultured neurons. Toxicol Sci 56:133–140

    Article  CAS  PubMed  Google Scholar 

  • Sano Y, Shimizu F, Nakayama H, Abe M, Maeda T, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Takahashi R, Kanda T (2007) Endothelial cells constituting blood-nerve barrier have highly specialized characteristics as barrier-forming cells. Cell Struct Funct 32:139–147

    Article  CAS  PubMed  Google Scholar 

  • Satoh K (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 90:37–43

    Article  CAS  PubMed  Google Scholar 

  • Sauer RS, Krug SM, Hackel D, Staat C, Konasin N, Yang S, Niedermirtl B, Bosten J, Gunther R, Dabrowski S, Doppler K, Sommer C, Blasig IE, Brack A, Rittner HL (2014) Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood-nerve-barrier permeability. J Control Release 185:88–98. doi:10.1016/j.jconrel.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi M, Sekiguchi Y, Konno S, Kobayashi H, Homma Y, Kikuchi S (2009) Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur Spine J 18:1978–1985. doi:10.1007/s00586-009-1064-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanthaveerappa TR, Bourne GH (1962) The ‘perineural epithelium’, a metabolically active, continuous, protoplasmic cell barrier surrounding peripheral nerve fasciculi. J Anat 96:527–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MR, Taha A, Moorthy K, Hussain ME, Basir SF, Baquer NZ (2005) Amelioration of altered antioxidant status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains. J Biosci 30:483–490

    Article  CAS  PubMed  Google Scholar 

  • Stapor P, Wang X, Goveia J, Moens S, Carmeliet P (2014) Angiogenesis revisited—role and therapeutic potential of targeting endothelial metabolism. J Cell Sci 127:4331–4341. doi:10.1242/jcs.153908

    Article  CAS  PubMed  Google Scholar 

  • Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Slomka M, Madro A, Celinski K, Wielosz M (2003) Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepato-Biliary-Pancreat Surg 10:309–315. doi:10.1007/s00534-002-0824-5

    Article  Google Scholar 

  • Takeshita Y, Ransohoff RM (2012) Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev 248:228–239. doi:10.1111/j.1600-065X.2012.01127.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolkovsky A (2002) Apoptosis in diabetic neuropathy. Int Rev Neurobiol 50:145–159

    Article  CAS  PubMed  Google Scholar 

  • Torres-Espín A, Allodi I, Santos D, González-Pérez F, Udina E, del Valle J, Navarro X (2016) Analysis of axonal growth in organotypic neural cultures. Protoc Exch. doi:10.1038/protex.2016.014

  • Tuschl H, Schwab C (2003) Cytotoxic effects of the herbicide 2,4-dichlorophenoxyacetic acid in HepG2 cells. Food Chem Toxicol 41:385–393

    Article  CAS  PubMed  Google Scholar 

  • Untucht C, Rasch J, Fuchs E, Rohde M, Bergmann S, Steinert M (2011) An optimized in vitro blood-brain barrier model reveals bidirectional transmigration of African trypanosome strains. Microbiology 157:2933–2941. doi:10.1099/mic.0.049106-0

    Article  CAS  PubMed  Google Scholar 

  • Weerasuriya A, Mizisin AP (2011) The blood-nerve barrier: structure and functional significance. Methods Mol Biol 686:149–173. doi:10.1007/978-1-60761-938-3_6

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Gao X, Zou H, Liu J, Zhang Z (2015) Rat nasal respiratory mucosa-derived ectomesenchymal stem cells differentiate into Schwann-like cells promoting the differentiation of PC12 cells and forming myelin in vitro. Stem Cells Int 2015:328957. doi:10.1155/2015/328957

    PubMed  PubMed Central  Google Scholar 

  • Zhang JF, Zhang L, Shi LL, Zhao ZH, Xu H, Liang F, Li HB, Zhao Y, Xu X, Yang K, Tian YF (2017) Parthenolide attenuates cerebral ischemia/reperfusion injury via Akt/GSK-3beta pathway in PC12 cells. Biomed Pharmacother 89:1159–1165. doi:10.1016/j.biopha.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Liu H, Wang D (2011) ADAM28 manipulates proliferation, differentiation, and apoptosis of human dental pulp stem cells. J Endod 37:332–339. doi:10.1016/j.joen.2010.11.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a thesis grant for Master of Science (grant no. 019) and a research project (grant no. 9223) of Research Vice-Chancellery of Ardabil University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Cell culture experiments were performed by M.S.P. and A.N. DAPI, EB/AO, staining and caspase assay were photographed and assessed by M.S.P. and A.N. Flow-cytometry was performed and interpreted by A.N. and N.N. FTIR analysis was applied by F.H.S. Biochemical analysis was performed under supervision of M.M. Tissue viability assay, RT-PCR, and western blotting were performed by M.S.P., A.N., and H.S. The paper was written principally by A.N. with input from all the other authors, especially H.S. Study design and statistically analyzing of data were done by A.N., M.R.G., and H.G.H.

Corresponding author

Correspondence to Ali Niapour.

Ethics declarations

Disclosure

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi Pasandi, M., Hosseini Shirazi, F., Gholami, M.R. et al. Epi/perineural and Schwann Cells as Well as Perineural Sheath Integrity are Affected Following 2,4-D Exposure. Neurotox Res 32, 624–638 (2017). https://doi.org/10.1007/s12640-017-9777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9777-y

Keywords

Navigation