Skip to main content
Log in

Preparing high-purity iron by direct reduction‒smelting separation of ultra-high-grade iron concentrate

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A new process for preparing high-purity iron (HPI) was proposed, and it was investigated by laboratory experiments and pilot tests. The results show that under conditions of a reduced temperature of 1075°C, reduced time of 5 h, and CaO content of 2.5wt%, a DRI with a metallization rate of 96.5% was obtained through coal-based direct reduction of ultra-high-grade iron concentrate. Then, an HPI with a Fe purity of 99.95% and C, Si, Mn, and P contents as low as 0.0008wt%, 0.0006wt%, 0.0014wt%, and 0.0015wt%, respectively, was prepared by smelting separation of the DRI using a smelting temperature of 1625°C, smelting time of 45 min, and CaO content of 9.3wt%. The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard. An HPI with a Fe purity of 99.98wt% can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost. The proposed process shows a promising prospect for application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Wang, Z. Rong, L. Xiang, S.T. Qiu, J.X. Li and T.L. Dong, Effect of decarburization annealing temperature and time on the carbon content, microstructure, and texture of grain-oriented pure iron, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 393.

    Article  CAS  Google Scholar 

  2. R.K. Biswas and D.A. Begum, Study of kinetics of forward extraction of Fe(III) from chloride medium by di-2-ethylhexyl phosphoric acid in kerosene using the single drop technique, Hydrometallurgy, 54(1999), No. 1, p. 1.

    Article  CAS  Google Scholar 

  3. K. Abiko, Why do we study ultra-high purity base metals, Mater. Trans., JIM, 41(2000), No. 1, p. 233.

    Article  CAS  Google Scholar 

  4. A. Prokhodtseva, B. Décamps, and R. Schäublin, Comparison between bulk and thin foil ion irradiation of ultra high purity Fe, J. Nucl. Mater, 442(2013), No. 1-3, p. S786.

    Article  CAS  Google Scholar 

  5. H. Matsumiya, M. Kuromiya, and M. Hiraide, Matrix-precipitation for the determination of trace impurities in high-purity iron, ISIJ Int, 53(2013), No. 1, p. 81.

    Article  CAS  Google Scholar 

  6. T. Kekesi, K. Mimura, and M. Isshiki, Ultra-high purification of iron by anion-exchange in hydrochloric acid solutions, Hydrometallurgy, 63(2002), No. 1, p. 1.

    Article  CAS  Google Scholar 

  7. K. Murakami, N. Nishida, K. Osamura, Y. Tomota, and T. Suzuki, Plasma nitridation of aluminized high purity iron, Acta Mater., 53(2005), No. 9, p. 2563.

    Article  CAS  Google Scholar 

  8. M. Uchikoshi, J. Imaizumi, H. Shibuya, T. Kékesi, K. Mimura, and M. Isshiki, Production of semiconductor grade high-purity iron, Thin Solid Films, 461(2004), No. 1, p. 94.

    Article  CAS  Google Scholar 

  9. T. Saitoh, K. Sakurai, and M. Hiraide, Thermoresponsive polymer-mediated extraction for graphite furnace atomic absorption spectrometric determination of trace metals in high purity iron, Microchem. J, 139(2018), p. 410.

    Article  CAS  Google Scholar 

  10. M. Uchikoshi, H. Shibuya, T. Kekesi, K. Mimura, and M. Isshiki, Mass production of high-purity iron using anion-exchange separation and plasma arc melting, Metall. Mater. Trans. B, 40(2009), No. 5, p. 615.

    Article  Google Scholar 

  11. S. Takaki and K. Abiko, Ultra-purification of electrolytic iron by cold-crucible induction melting and induction-heating floating-zone melting in ultra-high vacuum, Maer Trans., JM, 41(2000), No. 1, p. 2.

    CAS  Google Scholar 

  12. F. Faudot, J.C. Rouchaud, L. Debove, M. Fedoroff, and J. Bigot, Elaboration of high purity iron (RRR>4000) by horizontal zone melting-attempts for chemical characterization, J. Phys. Chem. Solids, 48(1987), No. 8, p. 761.

    Article  CAS  Google Scholar 

  13. K. Tudu, S. Pal, and N.R. Mandre, Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer, Int. J. Miner. Metall. Mater, 25(2018), No. 5, p. 498.

    Article  CAS  Google Scholar 

  14. S.O. Bada, A.S. Afolabi, and M.J. Makhula, Effect of reverse flotation on magnetic separation concentrates, Int. J. Miner. Metall. Mater, 19(2012), No. 8, p. 669.

    Article  CAS  Google Scholar 

  15. Q.X. Ye, H.B. Zhu, L.B. Zhang, J. Ma, L. Zhou, P. Liu, J. Chen, G. Chen, and J.H. Peng, Preparation of reduced ironpowder using combined distribution of wood-charcoal by microwave heating, J. Alloys Compd, 613(2014), p. 102.

    Article  CAS  Google Scholar 

  16. Y.I. Cho, B.H. Kim, S.J. Kim, J.J. Yun, H. Lee, S.H. Park, and S.C. Jung, Preparation and characterization of zero valent iron powders via transfer type reductor using iron oxide from the acid regeneration process, Adv. Powder Technol, 24(2013), No. 5, p. 858.

    Article  CAS  Google Scholar 

  17. W.F. Li, J. Zhan, Y.Q. Fan, C. Wei, C.F Zhang, and J.Y. Wang, J.Y. Research and industrial application of a process for direct reduction of molten high-lead smelting slag, JOM, 69(2017), No. 4, p. 784.

    Article  CAS  Google Scholar 

  18. J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xin, Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures, Int. J. Miner. Metall. Mater, 22(2015), No. 6, p. 562.

    Article  CAS  Google Scholar 

  19. S.Y. He, H.Y. Sun, C.Q. Hu, J. Li, Q.S. Zhu, and H.Z. Li, Direct reduction of fine iron ore concentrate in a conical fluidized bed, Powder Technol., 313(2017), p. 161.

    Article  CAS  Google Scholar 

  20. F. Li, M.S. Chu, J. Tang, Z.G. Liu, C. Feng, and Y.T. Tang, Swelling behavior of high-chromium, vanadium-bearing titanomagnetite pellets in H2-CO-CO2 gas mixtures, JOM, 69(2017), No. 10, p. 1751.

    Article  CAS  Google Scholar 

  21. W. Zhou, B. Xie, W.F Tan, J. Diao, X. Zhang, and H.Y. Li, W.F Non-isothermal crystallization kinetics of spinels in vanadium slag with high CaO content, JOM, 68(2016), No. 9, p. 2520.

    Article  CAS  Google Scholar 

  22. H.Y. Sun, J.S. Wang, Y.H. Han, X.F. She, and Q.G. Xue, Reduction mechanism of titanomagnetite concentrate by hydrogen, Int. J. Miner. Process, 125(2013), p. 122.

    Article  CAS  Google Scholar 

  23. Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater, 26(2019), No. 2, p. 152.

    Article  CAS  Google Scholar 

  24. E. Park and O. Ostrovski, Reduction of titania-ferrous ore by carbon monoxide, ISIJ Int, 43(2003), No. 9, p. 1316.

    Article  CAS  Google Scholar 

  25. Standards Press China, GB/T 9971-2017: Pure Iron Raw Material, Beijing, 2017, p. 1.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51904063), the Fundamental Research Funds for the Central Universities, China (Nos. N172503016, N172502005, and N172506011) and the China Postdoctoral Science Foundation (No. 2018M640259).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man-sheng Chu or Jue Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhao, Qj., Chu, Ms. et al. Preparing high-purity iron by direct reduction‒smelting separation of ultra-high-grade iron concentrate. Int J Miner Metall Mater 27, 454–462 (2020). https://doi.org/10.1007/s12613-019-1959-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1959-6

Keywords

Navigation