Skip to main content

Advertisement

Log in

Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

AA 6061 alloy and interstitial-free (IF) steel plates were joined by the friction stir welding (FSW) method, and the microstructure, mechanical properties, and biaxial stretch formability of the friction stir welded (FSWed) parts were investigated. The results indicate that the FSWed parts showed optimum tensile strength during FSW with the 0.4-mm offset position of the tool. The Fe4Al13 intermetallic compound formed in the defect-free intersection of AA 6061 and IF-steel plates during FSW. The hardness of the IF-steel part of the FSWed region increased almost 90% relative to its initial hardness of HV0.2 105. The tensile and yield strengths of FSWed regions were approximately 170 MPa and 145 MPa, respectively. According to the formability tests, the Erichsen Index (EI) of the IF-steel, AA 6061, and the FSWed samples were determined to be 2.9 mm, 1.9 mm, and 2.1 mm, respectively. The EI of the FSWed sample was almost the same as that of the AA 6061 alloy. However, it decreased compared with that of the IF-steel. The force at EI (FEI) was approximately 1180 N for the FSWed condition. This value is approximately 70% higher than that of AA 6061 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, and Z.Y. Ma, Pinless friction stir spot welding of Mg-3Al-1Zn alloy with Zn interlayer, J. Mater. Sci. Technol., 32(2016), No. 1, p. 76.

    Article  Google Scholar 

  2. X. Liu, S.H. Lan, and J. Ni, Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel, Mater. Des., 59(2014), p. 50.

    Article  Google Scholar 

  3. D.M. Sekban, O. Saray, S.M. Aktarer, G. Purcek, and Z.Y. Ma, Microstructure, mechanical properties and formability of friction stir processed interstitial-free steel, Mater. Sci. Eng. A, 642(2015), p. 57.

    Article  Google Scholar 

  4. M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, W.J. Cheng, and C.J. Wang, Effect of annealing treatment on joint strength of aluminum/steel friction stir lap weld, Mater. Des., 44(2013), p. 487.

    Article  Google Scholar 

  5. M.D. Sameer and A.K. Birru, Investigations on microstructural evolutions and mechanical properties of dual-phase 600 steel and AA6082-T6 aluminum alloy dissimilar joints fabricated by friction stir welding, Trans. Indian Inst. Met., 72(2019), No. 2, p. 353.

    Article  Google Scholar 

  6. L. Wan and Y.X. Huang, Friction stir welding of dissimilar aluminum alloys and steels: a review, Int. J. Adv. Manuf. Technol., 99(2018), No. 5–8, p. 1781.

    Article  Google Scholar 

  7. B. Seo, K.H. Song, and K. Park, Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel, Met. Mater. Int., 24(2018), No. 6, p. 1232.

    Article  Google Scholar 

  8. M. Thomä, G. Wagner, B. Straß, B. Wolter, S. Benfer, and W. Fürbeth, Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-joints, J. Mater. Sci. Technol., 34(2017), No. 1, p. 163.

    Article  Google Scholar 

  9. P.H.C.P.D. Cunha, G.V.B. Lemos, L. Bergmann, A. Reguly, J.F.D. Santos, R.R. Marinho, and M.T.P. Paes, Effect of welding speed on friction stir welds of GL E36 shipbuilding steel, J. Mater. Res. Technol., 2018. https://doi.org/10.1016/j.jmrt.2018.07.014

  10. F.H. Nie, H.G. Dong, S. Chen, P. Li, L.Y. Wang, Z.X. Zhao, X.T. Li, and H. Zhang, Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints, J. Mater. Sci. Technol., 34(2018), No. 3, p. 551.

    Article  Google Scholar 

  11. B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, and Z.Y. Ma, Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling, J. Mater. Sci. Technol., 33(2017), No. 9, p. 1009.

    Article  Google Scholar 

  12. K.M. Venkatesh, M. Arivarsu, M. Manikandan, and N. Arivazhagan, Review on friction stir welding of steels, Mater. Today Proc., 5(2018), No. 5, p. 13227.

    Article  Google Scholar 

  13. R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1–2, p. 1.

    Article  Google Scholar 

  14. M. Jafarzadegan, A. Abdollah-zadeh, A.H. Feng, T. Saeid, J. Shen, and H. Assadi, Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel, J. Mater. Sci. Technol., 29(2013), No. 4, p. 367.

    Article  Google Scholar 

  15. M.I. Costa, C. Leitão, A.L. Ramalho, and D.M. Rodrigues, Local improvement of structural steels high-friction properties by friction stir texturing, J. Mater. Process. Technol., 217(2015), p. 272.

    Article  Google Scholar 

  16. S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, and J.G. Kerbiguet, Intermetallic compounds in Al 6016/IF-steel friction stir spot welds, Mater. Sci. Eng. A, 527(2010), No. 16–17, p. 4505.

    Article  Google Scholar 

  17. Y.F. Sun, H. Fujii, N. Takaki, and Y. Okitsu, Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique, Mater. Des., 47(2013), p. 350.

    Article  Google Scholar 

  18. M. Movahedi, A. H. Kokabi, and S.M. Seyed Reihani, Investigation on friction stir lap welding of aluminium to aluminium clad steel sheets, Sci. Technol. Weld. Joining, 17(2012), No. 3, p. 231.

    Article  Google Scholar 

  19. K. Kimapong and T. Watanabe, Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding, Mater. Trans., 46(2005), No. 4, p. 835.

    Article  Google Scholar 

  20. T.H. Wang, M. Komarasamy, K.M. Liu, and R.S. Mishra, Friction stir butt welding of strain-hardened aluminum alloy with high strength steel, Mater. Sci. Eng. A, 737(2018), p. 85.

    Article  Google Scholar 

  21. B. Sundman, I. Ohnuma, N. Dupin, U.R. Kattner, and S.G. Fries, An assessment of the entire Al-Fe system including D03 ordering, Acta Mater., 57(2009), No. 10, p. 2896.

    Article  Google Scholar 

  22. S.G. Sajan, M. Meshram, P. Srinivas, and S.R. Dey, Friction stir welding of aluminum 6082 with mild steel and its joint analyses, Int. J. Adv. Mater. Manuf. Charact., 3(2013), No. 1, p. 189.

    Google Scholar 

  23. K.K. Ramachandran, N. Murugan, and S. Shashi Kumar, Performance analysis of dissimilar friction stir welded aluminium alloy AA5052 and HSLA steel butt joints using response surface method, Int. J. Adv. Manuf. Technol., 86(2016), No. 9–12, p. 2373.

    Article  Google Scholar 

  24. M. Merklein and A. Giera, Laser assisted friction stir welding of drawable steel-aluminium tailored hybrids, Int. J. Mater. Form., 1(2008), No. 1, p. 1299.

    Article  Google Scholar 

  25. S. Kundu, D. Roy, R. Bhola, D. Bhattacharjee, B. Mishra, and S. Chatterjee, Microstructure and tensile strength of friction stir welded joints between interstitial free steel and commercially pure aluminium, Mater. Des., 50(2013), p. 370.

    Article  Google Scholar 

  26. K.N. Krishnan, On the formation of onion rings in friction stir welds, Mater. Sci. Eng. A, 327(2002), No. 2, p. 246.

    Article  Google Scholar 

  27. K. Kumar and S.V. Kailas, The role of friction stir welding tool on material flow and weld formation, Mater. Sci. Eng. A, 485(2008), No. 1–2, p. 367.

    Article  Google Scholar 

  28. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, W.H. Bingel, and R.A. Spurling, Properties of friction-stir-welded 7075 T651 aluminum, Metall. Mater. Trans. A, 29(1998), No. 7, p. 1955.

    Article  Google Scholar 

  29. M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum, Mater. Sci. Eng. A, 323(2002), No. 1–2, p. 160.

    Article  Google Scholar 

  30. D.M. Sekban, S.M. Aktarer, H. Zhang, P. Xue, Z.Y. Ma, and G. Purcek, Microstructural and mechanical evolution of a low carbon steel by friction stir processing, Metall. Mater. Trans. A, 48(2017), No. 8, p. 3869.

    Article  Google Scholar 

  31. M.A. Abdulstaar, K.J. Al-Fadhalah, and L. Wagner, Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints, Mater. Charact., 126(2017), p. 64.

    Article  Google Scholar 

  32. G. Çam and S. Mistikoglu, Recent developments in friction stir welding of Al-alloys, J. Mater. Eng. Perform., 23(2014), No. 6, p. 1936.

    Article  Google Scholar 

  33. H.A. Derazkola and M. Elyasi, Feasibility study on aluminum alloys and A441 AISI steel joints by friction stir welding, Int. J. Adv. Des. Manuf. Technol, 7(2014), No. 4, p. 99.

    Google Scholar 

  34. H. Bang, H. Bang, G. Jeon, I. Oh, and C. Ro, Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel, Mater. Des., 37(2012), p. 48.

    Article  Google Scholar 

  35. R.S. Coelho, A. Kostka, J.F. dos Santos, and A. Kaysser-Pyzalla, Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure, Mater. Sci. Eng. A, 556(2012), p. 175.

    Article  Google Scholar 

  36. X. Liu, S.H. Lan, and J. Ni, Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel, J. Mater. Process. Technol., 219(2015), p. 112.

    Article  Google Scholar 

  37. T. Tanaka, T. Morishige, and T. Hirata, Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys, Scripta Mater., 61(2009), No. 7, p. 756.

    Article  Google Scholar 

  38. T. Watanabe, H. Takayama, and A. Yanagisawa, Joining of aluminum alloy to steel by friction stir welding, J. Mater. Process. Technol., 178(2006), No. 1–3, p. 342.

    Article  Google Scholar 

  39. C.M. Chen and R. Kovacevic, Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding, Int. J. Mach. Tools Manuf., 44(2004), No. 11, p. 1205.

    Article  Google Scholar 

  40. Y. Kusuda, Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle, Ind. Robot-I.J. Rob. Res. Appl., 40(2013), No. 3, p. 208.

    Google Scholar 

  41. O. Saray, Biaxial deformation behavior and formability of precipitation hardened ultra-fine grained (UFG) Cu-Cr-Zr alloy, Mater. Sci. Eng. A, 656(2016), p. 120.

    Article  Google Scholar 

  42. B. Sadeghian, A. Taherizadeh, and M. Atapour, Simulation of weld morphology during friction stir welding of aluminum-stainless steel joint, J. Mater. Process. Technol., 259(2018), p. 96.

    Article  Google Scholar 

  43. O. Saray, G. Purcek, I. Karaman, and H.J. Maier, Formability of ultrafine-grained interstitial-free steels, Metall. Mater. Trans. A, 44(2013), No. 9, p. 4194.

    Article  Google Scholar 

  44. O. Saray, G. Purcek, I. Karaman, and H.J. Maier, Improvement of formability of ultrafine-grained materials by post-SPD annealing, Mater. Sci. Eng. A, 619(2014), p. 119.

    Article  Google Scholar 

  45. M.P. Manahan, A.E. Browning, A.S. Argon, and O.K. Harling, Miniaturized disk bend test technique development and application, ASTM Spec. Tech. Publ., (1986), p. 17.

  46. Y.M. Yue, Z.W. Li, S.D. Ji, Y.X. Huang, and Z.L. Zhou, Effect of reverse-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy, J. Mater. Sci. Technol., 32(2016), No. 7, p. 671.

    Article  Google Scholar 

  47. S. Mironov, Y.S. Sato, and H. Kokawa, Microstructural evolution during friction stir-processing of pure iron, Acta Mater., 56(2008), No. 11, p. 2602.

    Article  Google Scholar 

  48. M.E. Cetin, M. Demirtas, H. Sofuoglu, Ö.N. Cora, and G. Purcek, Effects of grain size on room temperature deformation behavior of Zn-22Al alloy under uniaxial and biaxial loading conditions, Mater. Sci. Eng. A, 672(2016), p. 78.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. G. Purcek was supported by “The World Academy of Sciences (TWAS) under the Visiting Researchers program of TWAS-UNESCO Associateship Scheme (No. 3240290077).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gencaga Purcek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktarer, S.M., Sekban, D.M., Kucukomeroglu, T. et al. Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy. Int J Miner Metall Mater 26, 722–731 (2019). https://doi.org/10.1007/s12613-019-1783-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1783-z

Keywords

Navigation