Skip to main content
Log in

Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo2C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo2C with low thickness can be the most suitable coatings for diamond/Al composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zweben C., Thermal materials solve power electronics challenges, Power Electron. Technol, 2006, 32: 40.

    Google Scholar 

  2. Molina J.M., Rhême M., Carron J., and Weber L., Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles, Scripta Mater., 2008, 58: 393.

    Article  CAS  Google Scholar 

  3. Witek A., Some aspects of thermal conductivity of isotopically pure diamond: a comparison with nitrides, Diam. Relat. Mater., 1998, 7: 962.

    Article  CAS  Google Scholar 

  4. Coe S.E. and Sussmann R.S., Optical, thermal and mechanical properties of CVD diamond, Diamond Relat. Mater., 2000, 9: 1726.

    Article  CAS  Google Scholar 

  5. Chu K., Liu Z.F., Jia C.C., Chen H., Liang X.B., Gao W.J., Tian W.H., and Guo H., Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles, J. Alloys Compd., 2009, 490: 453.

    Article  Google Scholar 

  6. Yang B., Yu J.K., and Chen C., Microstructure and thermal expansion of Ti coated diamond/Al composites, Trans. Nonferrous Met. Soc. China., 2009, 19: 1167.

    Article  CAS  Google Scholar 

  7. Lu J., Wang Y., Zang J., and Shan S., Effect of Si and Ti coating on interface bonding between diamond and Fe-based metal bond, Key Eng. Mater., 2008, 359–360: 15.

    Article  Google Scholar 

  8. Leparoux S., Diot C., Dubach A., and Vaucher S., Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: a heteroepitaxial growth, Scripta Mater., 2007, 57: 595.

    Article  CAS  Google Scholar 

  9. Mizuuchi K., Inoue K., Agari Y., Yamada S., Sugioka M., Itami M., Kawahara M., and Makino Y., Consolidation and thermal conductivity of diamond particle dispersed copper matrix composites produced by spark plasma sintering (SPS), J. Jpn. Inst. Met., 2007, 71: 1066.

    Article  CAS  Google Scholar 

  10. Liu X.F. and Lia Y.Z., The microanalysis of the bonding condition between coated diamond and matrix, Int. J. Refract. Met. Hard Mater., 2003, 21: 119.

    Article  Google Scholar 

  11. Abdullah A., Pak A., Farahi M., and Barzegari M., Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide, J. Mater. Process. Technol., 2007, 183: 165.

    Article  CAS  Google Scholar 

  12. Johnson W.B. and Sonuparlak B., Diamond/Al metal matrix composites formed by the pressureless metal infiltration process, J. Mater. Res., 1993, 8: 1169.

    Article  CAS  Google Scholar 

  13. Swartz E.T. and Pohl R.O., Thermal boundary resistance, Rev. Mod. Phys., 1989, 61: 605.

    Article  Google Scholar 

  14. Gundrum B.C., Cahill D.G., and Averback R.S., Thermal conductance of metal-metal interfaces, Phys. Rev. B, 2005, 72: Art. No. 245426.

    Google Scholar 

  15. Salaway R.N., Hopkins P.E., Norris P.M., and Stevens R.J., Phonon contribution to thermal boundary conductance at metal interfaces using embedded atom method simulations, Int. J. Thermophys, 2008, 29: 1987.

    Article  CAS  Google Scholar 

  16. Jiajun W. and Su Y.X., Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites, Compos. Sci. Technol., 2004, 64: 1623.

    Google Scholar 

  17. da Silva L.W. and Kaviany M., Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport, Int. J. Heat Mass Transfer, 2004, 47: 2417.

    Article  Google Scholar 

  18. Lyeo H.K. and Cahill D.G., Thermal conductance of interfaces between highly dissimilar materials, Phys. Rev. B, 2006, 73: Art. No. 144301.

    Google Scholar 

  19. Hasselman D.P.H. and Johnson L.F., Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 1987, 21: 508.

    Article  Google Scholar 

  20. Klerk J.D., Elastic constants and Debye temperature of TiC using a new ultrasonic coherent pulse/cw technique, Rev. Sci. Instrum., 1965, 36: 1540.

    Article  CAS  Google Scholar 

  21. Cankurtaran M., Dodd S.P., and James B., Ultrasonic study of the temperature and pressure dependences of the elastic properties of ceramic dimolybdenum carbide (α-Mo2C), J. Mater. Sci., 2004, 39: 1241.

    Article  CAS  Google Scholar 

  22. Hofmann M., Zywietz A., Karch K., and Bechstedt F., Lattice dynamics of SiC polytypes within the bond-charge model, Phys. Rev. B, 1994, 50: 13401.

    Article  CAS  Google Scholar 

  23. Rajan T.P.D., Pillai R.M., and Pai B.C., Reinforcement coatings and interfaces in aluminium metal matrix composites, J. Mater. Sci., 1998, 33: 3491.

    Article  CAS  Google Scholar 

  24. Subramanian C., Stratford K.N., Wilks T.P., and Ward L.P., On the design of coating systems: metallurgical and other considerations, J. Mater. Process. Technol., 1996, 56: 385.

    Article  Google Scholar 

  25. Leroy W.P., Detavernier C., Van Meirhaeghe R.L., Kellock A.J., and Lavoie C., Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors, J. Appl. Phys., 2006, 99: Art. No. 063704.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebing Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Jia, C., Chu, K. et al. Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings. Rare Metals 30, 544–549 (2011). https://doi.org/10.1007/s12598-011-0427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0427-x

Keywords

Navigation