Skip to main content
Log in

Photocatalytic degradation of gaseous o-xylene over M-TiO2 (M=Ag, Fe, Cu, Co) in different humidity levels under visible-light irradiation: activity and kinetic study

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

M-TiO2 (M = Ag, Fe, Cu, Co) photocatalysts were prepared by a sol-gel method with the doping concentration ranging from 0.1 at.% to 1.0 at.% using glacial acetic acid as chelating agent and Ti(OC4H9)4 as precursor. Transition metal ions doping increased the surface area and extended the absorption of TiO2 to visible light region. The photocatalytic performance and kinetic of M-TiO2 samples for degradation of gaseous o-xylene in different humidity levels under visible light irradiation were studied in detail. The photocatalytic activity of M-TiO2 increased with the increasing of humidity level from R.H. 25% to R.H. 60%. The Fe-doped TiO2 shows the best activity among these M-TiO2 (M = Ag, Fe, Cu, Co) photocatalysts. The conversion of o-xylene over 0.5 at.% Fe-TiO2 is 87.3% in R.H. 25% and 95.5% in R.H. 60%, respectively. The photocatalytic process is typical of Langmuir-Hinshelwood model of first-order reaction. The apparent rate constant was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkinson C.F., Being more realistic about chemical carcinogenesis, Environ. Sci. Technol., 1987, 21: 843.

    Article  Google Scholar 

  2. Hoffmann M.R., Martin S.T., and Choi W., Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95: 69.

    Article  CAS  Google Scholar 

  3. Wang S.B., Ang H.M., and Tade M.O., Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art, Environ, Int., 2007, 33: 694.

    Article  CAS  Google Scholar 

  4. Maira A.J., Coronado J.M., Augugliaro V., Yeung K.L., and Conesa J.C., FTIR study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene, J. Soria, J. Catal., 2001, 202: 413.

    Article  CAS  Google Scholar 

  5. Dibble L.A., and Raupp G.B., Environ. The gas-photocatalytic degradation of trichloroethylene without water, Environ. Sci. Technol., 1992, 26: 492.

    Article  CAS  Google Scholar 

  6. Alberici R.M., and Jardim W.F., Photocatalytic destruction of VOCs in the gas phase using titanium dioxide, Appl. Catal. B: Environ., 1997, 14: 55.

    Article  CAS  Google Scholar 

  7. Kisch H., Zhang L., Lange C., Maier W.F., Antonius C., and Meissner D., Modified, Amorphous Titania — a hybrid semiconductor for detoxification and current generation by visible light, Modified, Angew. Chem. Int. Ed. Engl., 1998, 37: 3034.

    Article  CAS  Google Scholar 

  8. Sidheswaran M., and Tavlarides L., Visible light photocatalytic oxidation of toluene using a cerium-doped titania catalyst, Ind. Eng. Chem. Res., 2008, 47: 3346.

    Article  CAS  Google Scholar 

  9. Choi J., Park H., and Hoffmann M.R., Effects of single metal-ion doping on the visible light photoreactivity of TiO2, J. Phys. Chem. C, 2010, 114: 783.

    Article  CAS  Google Scholar 

  10. Cao Y., Yang W., Zhang W., Liu G., and Yue P., New J. Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition, New J. Chem., 2004, 28: 218.

    Article  Google Scholar 

  11. Wang E., Yang W., and Cao Y., Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity, J. Phys. Chem. C, 2009, 113: 20912.

    Article  CAS  Google Scholar 

  12. Belver C., Bellod R., Stewart S.J., Requejo F.G., and Fernández-García M., Nitrogen-containing TiO2 photocatalysts: Part 2. Photocatalytic behavior under sunlight excitation, Appl. Catal. B: Environ., 2006, 65: 309.

    Article  CAS  Google Scholar 

  13. Yang X., Cao C., Erickson L., Hohn K., Maghirang R., and Klabunde K., Photocatalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation, Appl. Catal. B: Environ., 2009, 91: 657.

    Article  CAS  Google Scholar 

  14. Miyauchi M., Nakajima A., Hashimoto K., and Watanabe T., A highly hydrophilic thin film under 1 μW/cm2 UV Illumination, Adv. Mater., 2000, 12: 1923.

    Article  CAS  Google Scholar 

  15. Li F.B., Li X.Z., Ao C.H., Lee S.C., and Hou M.F., Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification, Chemosphere, 2005, 59: 787.

    Article  CAS  Google Scholar 

  16. Choi W., Termin A., and Hoffmann M.R., The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 1994, 98: 13669.

    Article  Google Scholar 

  17. Jing L., Qu Y., Wang B., Li S., Jiang B., Yang L., Fu W., Fu H., and Sun J., Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells, 2006, 90: 1773.

    Article  CAS  Google Scholar 

  18. Zhu J., Chen F., Zhang J., Chen H., and Anpo M., Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization, J. Photochem. Photobiol. A: Chem., 2006, 180: 196.

    Article  CAS  Google Scholar 

  19. Li X., Yue P.L., and Kutal C., Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles, New J. Chem., 2003, 27: 1264.

    Article  CAS  Google Scholar 

  20. Murakami N., Chiyoya T., Tsubota T., and Ohno T., Switching redox site of photocatalytic reaction on titanium (IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength, Appl. Catal. A: Gen., 2008, 348: 148.

    Article  CAS  Google Scholar 

  21. Sun S., Ding J.J., Bao J., Gao C., Qi Z., and Li C., Photocatalytic oxidation of gaseous formaldehyde on TiO2: an in situ DRIFTS study, Catal. Lett., 2010, 137: 239.

    Article  CAS  Google Scholar 

  22. Rouquerol F., Rouquerol J., and Sing K.S.W., Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, San Diego, 1999.

    Google Scholar 

  23. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., and Siemieniewska T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, 57: 603.

    Article  CAS  Google Scholar 

  24. Zhu S., Shi T., Liu W., Wei S., Xie Y., Fan C., and Li Y., Direct determination of local structure around Fe in anatase TiO2, Physica B, 2007, 396: 177.

    Article  CAS  Google Scholar 

  25. Yamashita H., Harada M., Misaka J., Takeuchi M., Neppolian B., and Anpo M., Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catal. Today, 2003, 84: 191.

    Article  CAS  Google Scholar 

  26. Cui L., Huang F., Niu M., Zeng L., Xu J., and Wang Y., A visible light active photocatalyst: nano-composite with Fe-doped anatase TiO2 nanoparticles coupling with TiO2 (B) nanobelts, J. Mol. Catal. A: Chem., 2010, 326: 1.

    Article  CAS  Google Scholar 

  27. Navio J.A., Colon G., Macias M., Real C., and Litter M.I., Iron-doped titania semiconductor powders prepared by a sol-gel method. Part I: synthesis and characterization, Appl. Catal. A: Gen., 1999, 177: 111.

    Article  CAS  Google Scholar 

  28. Umebayashi T., Yamaki T., Itoh H., and Asai K., Analysis of electronic structure of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids, 2002, 63: 1909.

    Article  CAS  Google Scholar 

  29. Chamarro M., Gourdon C., and Lavallard P., Photoluminescence polarization of semiconductor nanocrystals, J. Lumin., 1996, 70: 222.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Bao or Chen Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Bao, J., Gao, C. et al. Photocatalytic degradation of gaseous o-xylene over M-TiO2 (M=Ag, Fe, Cu, Co) in different humidity levels under visible-light irradiation: activity and kinetic study. Rare Metals 30 (Suppl 1), 147–152 (2011). https://doi.org/10.1007/s12598-011-0258-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0258-9

Keywords

Navigation