Skip to main content
Log in

Effect of silicate structure on thermodynamic properties of calcium silicate melts: Quantitative analysis of Raman spectra

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The distribution of silicate anionic species (Qn units, n=0, 1, 2, 3) and the chemical speciation of oxygen in CaO-SiO2-MO (M=Mn and Mg) slags were investigated by micro-Raman spectroscopic analysis. Furthermore, the thermochemical properties were evaluated using a concentration of free oxygen and a degree of polymerization. A good linear relationship was obtained between sulfide capacity and concentration of free oxygen in the CaO-SiO2 (-MnO) melts at 1500 to 1600 °C. However, even though there was more abundant free oxygen in the CaO-SiO2-MgO system than in the CaO-SiO2 system, the sulfide capacity of the former was lower than the latter, indicating that the sulfur dissolution behavior in the silicate melts cannot be simply explained by the content of free oxygen, because the composition dependency of the stability ratio of oxygen and sulfide ions should be taken into account. The excess free energy of CaO, MgO and MnO linearly decreased as the ln (Q3/Q2) increased. The effect of the degree of polymerization on the excess free energy of mixing of MgO-containing slag was larger than that of MnO-containing slag, which was explained by the difference of the ionization potential between Mn2+ and Mg2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Waseda and J.M. Toguri, The Structure and Properties of Oxide Melts, World Scientific Publishing, Singapore (1998).

    Google Scholar 

  2. B. O. Mysen and P. Richet, Silicate Glasses and Melts: Properties and Structure, Elsevier, Amsterdam, Netherlands (2005).

    Google Scholar 

  3. C. J. B. Fincham and F. D. Richardson, J. Iron Steel Inst. 178, 4 (1954).

    Google Scholar 

  4. K. P. Abraham, M. W. Davies, and F. D. Richardson, J. Iron Steel Inst. 196, 309 (1960).

    CAS  Google Scholar 

  5. R. G. Reddy and M. Blander, Metall. Mater. Trans. B 18, 591 (1987).

    Article  Google Scholar 

  6. M. M. Nzotta, R. Nilsson, Du Sichen, and S. Seetharaman, Ironmaking & Steelmaking 24, 300 (1997).

    CAS  Google Scholar 

  7. J. H. Park and D. J. Min, Mater. Trans. 47, 2038 (2006).

    Article  CAS  Google Scholar 

  8. Y. B. Kang and A. D. Pelton, Metall. Mater. Trans. B 40, 979 (2009).

    Article  Google Scholar 

  9. M. K. Cho, J. Cheng, J. H. Park, and D. J. Min, ISIJ Int. 50, 215 (2010).

    Article  CAS  Google Scholar 

  10. G. H. Park, Y. B. Kang, and J. H. Park, ISIJ Int. 51, 1375 (2011).

    Article  Google Scholar 

  11. Y. B. Kang and J. H. Park, Metall. Mater. Trans. B 42, 1211 (2011).

    Article  CAS  Google Scholar 

  12. J. H. Park and G. H. Park, ISIJ Int. 52, 764 (2012).

    CAS  Google Scholar 

  13. C. R. Masson, I. B. Smith, and S. G. Whiteway, Can. J. Chem. 48, 1456 (1970).

    Article  CAS  Google Scholar 

  14. A. K. Lahiri, Trans. Faraday Soc. 67, 2952 (1971).

    Article  CAS  Google Scholar 

  15. L. M. Barron, Am. Mineral. 57, 809 (1972).

    CAS  Google Scholar 

  16. G. R. Belton, H. Suito, and D. R. Gaskell, Metall. Trans. 4, 2541 (1973).

    Article  CAS  Google Scholar 

  17. D. R. Gaskell, Metall. Trans. B 8, 131 (1977).

    Article  Google Scholar 

  18. P. C. Hess, Can. Mineral. 15, 162 (1977).

    Google Scholar 

  19. M. S. Ghiorso, I. S. E. Carmichael, M. L. Rivers, and R. O. Sack, Contrib. Mineral. Petrol. 84, 107 (1983).

    Article  CAS  Google Scholar 

  20. G. Ottonello, J. Non-Cryst. Solids 282, 72 (2001).

    Article  CAS  Google Scholar 

  21. J. Etchepare, Study by Raman Spectroscopy of Crystalline and Glassy Diopside, in Amorphous Materials, eds. R.W. Douglas and E. Ellis, Wiley-Interscience, New York, NY (1972).

  22. T. Furukawa, K. E. Fox, and W. B. White, J. Chem. Phys. 75, 3226 (1981).

    Article  CAS  Google Scholar 

  23. S. A. Brawer and W. B. White, J. Chem. Phys. 63, 2421 (1975).

    Article  CAS  Google Scholar 

  24. S. A. Brawer and W. B. White, J. Non-Cryst. Solids 23, 261 (1977).

    Article  CAS  Google Scholar 

  25. D. Virgo, B. O. Mysen, and I. Kushiro, Science 208, 1371 (1980).

    Article  CAS  Google Scholar 

  26. B. O. Mysen, Am. Mineral. 65, 690 (1980).

    CAS  Google Scholar 

  27. P. McMillan, Am. Mineral. 69, 622 (1984).

    CAS  Google Scholar 

  28. B. O. Mysen, Earth Sci. Rev. 27, 281 (1990).

    Article  Google Scholar 

  29. C. M. Schramm, B. H. W. S. DeJong, and V. F. Parziale, J. Am. Chem. Soc. 106, 4396 (1984).

    Article  Google Scholar 

  30. J. F. Stebbins, Nature 330, 465 (1987).

    Article  CAS  Google Scholar 

  31. J. F. Stebbins and Z. Xu, Nature 390, 60 (1997).

    Article  CAS  Google Scholar 

  32. I. Georgieva, I. T. Ivanov, V. Dimitrov, E. Gattef, and Y. Dimitriev, J. Mater. Sci. 31, 3197 (1996).

    Article  CAS  Google Scholar 

  33. I. Zebger, F. Pfeifer, and N. Nowack, J. Non-Cryst. Solids 351, 3443 (2005).

    Article  CAS  Google Scholar 

  34. K. A. Evans, H. St. C. O’Neill, J. A. Mavrogenes, N. S. Keller, L. Y. Jang, and J. F. Lee, Geochim. Cosmochim. Acta 73, 6847 (2009).

    Article  CAS  Google Scholar 

  35. J. H. Park, J. G. Park, D. J. Min, Y. E. Lee, and Y. B. Kang, J. Eur. Ceram. Soc. 30, 3181 (2010).

    Article  CAS  Google Scholar 

  36. J. H. Park, G. H. Park, and Y. E. Lee, ISIJ Int. 50, 1078 (2010).

    Article  CAS  Google Scholar 

  37. E. J. Jung, W. Kim, I. Sohn, and D. J. Min, J. Mater. Sci. 45, 2023 (2010).

    Article  CAS  Google Scholar 

  38. A. Chrissanthopoulos, N. Bouropoulos, and S. N. Yannopoulos, Vib. Spectrosc. 48, 118 (2008).

    Article  CAS  Google Scholar 

  39. P. McMillan, Am. Mineral. 69, 645 (1984).

    CAS  Google Scholar 

  40. Y. Q. Wu, G. C. Jiang, J. L. You, H. Y. Hou, H. Chen, and K. D. Xu, J. Chem. Phys. 121, 7883 (2004).

    Article  CAS  Google Scholar 

  41. K. C. Mills, Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, Germany, (1995).

    Google Scholar 

  42. K. C. Mills, ISIJ Int. 33, 148 (1993).

    Article  CAS  Google Scholar 

  43. L. Zhang and S. Jahanshahi, Metall. Mater. Trans. B 29, 177 (1998).

    Article  Google Scholar 

  44. J. H. Park and P. C. H. Rhee, J. Non-Cryst. Solids 282, 7 (2001).

    Article  CAS  Google Scholar 

  45. A. Bronson and G. R. St. Pierre, Metall. Trans. B 12, 729 (1981).

    Article  Google Scholar 

  46. C. H. P. Lupis, Chemical Thermodynamics of Materials, Prentice Hall, New York, NY (1993).

    Google Scholar 

  47. CRCT-ThermFact and GTT-Technologies, FACTSAGE, www.factsage.com (2012).

  48. C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A. D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).

    Article  CAS  Google Scholar 

  49. M. O. Suk and J. H. Park, J. Am. Ceram. Soc. 92, 717 (2009).

    Article  CAS  Google Scholar 

  50. J. H. Park, I. H. Jung, and S. B. Lee, Met. Mater. Int. 15, 677 (2009).

    Article  CAS  Google Scholar 

  51. J. H. Park, Met. Mater. Int. 16, 987 (2010).

    Article  CAS  Google Scholar 

  52. J. H. Park, Calphad 35, 455 (2011).

    Article  CAS  Google Scholar 

  53. K. Y. Ko and J. H. Park, Metall. Mater. Trans. B 42, 1224 (2011).

    Article  CAS  Google Scholar 

  54. K. Y. Ko and J. H. Park, Metall. Mater. Trans. B 43, 440 (2012).

    Article  CAS  Google Scholar 

  55. D. J. Kim and J. H. Park, Metall. Mater. Trans. B 43, 875 (2012).

    Article  CAS  Google Scholar 

  56. J. H. Heo, S. S. Park, and J. H. Park, Metall. Mater. Trans. B 43, 1098 (2012).

    Article  CAS  Google Scholar 

  57. J. S. Park, C. Lee, and J. H. Park, Metall. Mater. Trans. B 43, 1550 (2012).

    Article  CAS  Google Scholar 

  58. J. Lee, L. T. Hoai, J. Choe, and J. H. Park, ISIJ Int. 52, 2145 (2012).

    Article  CAS  Google Scholar 

  59. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H. Effect of silicate structure on thermodynamic properties of calcium silicate melts: Quantitative analysis of Raman spectra. Met. Mater. Int. 19, 577–584 (2013). https://doi.org/10.1007/s12540-013-3028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-3028-4

Key words

Navigation