Skip to main content
Log in

Evaluation of Molar Volume of Silicate Systems Using a Structural Model

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A structural based model is proposed to represent the molar volume of silicate melts in terms of both temperature and composition. The model links the molar volume to the internal structure of melts through the concentrations of non-bridging oxygen present in the slag. A previous proposed structural thermodynamic model is used to calculate the content of oxygen ions. The molar volume model requires only one or two parameters to obtain a good agreement between experimental and calculated data for the SiO2–Na2O, SiO2–CaO, SiO2–MgO, SiO2–MnO, and SiO2–PbO binary systems. The molar volume of ternary systems is calculated with the model assuming a linear function of the parameters from binary systems; however, the content of non-oxygen bridges is calculated using the thermodynamic model for ternary systems. Comparison is made between the experimental and model results for the SiO2–CaO–MnO, SiO2–Na2O–PbO and SiO2–CaO–MgO systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Mills, K.C., Karagagge, S., Lee, P.D., Yuang, L. and Shahbazian, F., Calculation of physical properties for use in models of continuous casting process-Part 1: Mould slags, ISIJ Int., 2016, vol. 56, pp. 264–273.

    Article  Google Scholar 

  2. Rabukhin, A.I., Structural interpretation of the concentration dependences of molar volume in lead silicate glasses, Glass Ceram., 2000, vol. 57, pp. 338–341.

    Article  Google Scholar 

  3. Thibodeau, E., Gheribi, A.E., and Jung, I.-H., A structural molar volume model for oxide melts, Part I: Li2O–Na2O–K2O–MgO–CaO–MnO–PbO–Al2O3–SiO2 melts-binary systems, Metall. Mater. Trans., B, 2016, vol. 47, pp. 1147–1164.

    Article  Google Scholar 

  4. Thibodeau, E., Gheribi, A.E., and Jung, I-H., A structural molar volume model for oxide melts Part II: Li2O–Na2O–K2O–MgO–CaO–MnO–PbO–Al2O3–SiO2 melts-ternary systems, Metall. Mater. Trans., B, 2016, vol. 47, pp. 1165–1186.

    Article  Google Scholar 

  5. Pelton, A.D. and Blander, M., Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach—Applications to silicate slags, Metall. Mater. Trans., B, 1986, vol. 17, pp. 805–815.

    Article  Google Scholar 

  6. Lin, P.L. and Pelton, A.D., A structural model for binary silicate systems, Metall. Trans., B, 1979, vol. 10, pp. 667–676.

    Article  Google Scholar 

  7. Romero-Serrano, A. and Pelton, A.D. Extensions of a structural model for binary silicate systems, Metall. Mater. Trans., B, 1995, vol. 26, pp. 305–315.

    Article  Google Scholar 

  8. López-Rodríguez, J., Romero-Serrano, A., Hernández-Ramírez, A., Pérez-Labra, M., Cruz-Ramírez, A., and Rivera-Salinas, E., Use of a structural model to calculate the viscosity of liquid silicate systems, ISIJ Int., 2018, vol. 58, pp. 220–226.

    Article  Google Scholar 

  9. Gutiérrez, J., Romero-Serrano, A., Plascencia, G., Chávez, F., and Vargas, R., Thermodynamic model for ternary silicate systems, ISIJ Int., 2000, vol. 40, pp. 664–669.

    Article  Google Scholar 

  10. Tomlinson, J.W., Heynes, M.S.R., and Bockris, J.O.M., The structure of liquid silicates Part 2. Molar volumes and expansivities, Trans. Faraday Soc., 1958, vol. 54, pp. 1822–1833.

    Article  Google Scholar 

  11. Courtial, P. and Dingwell, D.B., Nonlinear composition dependence of molar volume of melts in the CaO–Al2O3–SiO2 system, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3685–3695.

    Article  Google Scholar 

  12. Sokolov, V.I., Popel, S.I., and Esin, O.A., Density and molar volume of slags, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1970, vol. 13, pp. 10–15.

    Google Scholar 

  13. Fujino, S., Hwang, C., and Morinaga, K., Density, surface tension, and viscosity of PbO–B2O3–SiO2 glass melts, J. Am. Ceram. Soc., 2004, vol. 87, pp. 10–16.

    Article  Google Scholar 

  14. Ouchi, Y., Yoshida, T., and Kato, E., Densities of ternary lead-silicate melts, J. Jpn. Inst. Met., 1977, vol. 41, pp. 865–874.

    Article  Google Scholar 

  15. Ito, H. and Yanagase, T., Studies on lead silicate melts, Trans. Jpn. Inst. Melts, 1960, vol. 1, pp. 115–120.

    Article  Google Scholar 

  16. Hino, M., Ejima, T., and Kameda, M., Surface tension and density of liquid lead silicate, J. Jpn. Inst. Met., 1967, vol. 31, pp. 113–119.

    Article  Google Scholar 

  17. Courtial, P. and Dingwell, D.B., Densities of melts in the CaO–MgO–Al2O3–SiO2 system, Am. Mineral., 1999, vol. 48, pp. 465–476.

    Article  Google Scholar 

  18. Gogiberidze, Y.M., Kekelidze, M.A., and Mikiashvili, S.M., Interfacial tension at the boundary between Fe–P alloys and MnO–SiO2 melts, Soobshch. Akad. Nauk Gruz. SSR, 1963, vol. 32, pp. 117–124.

    Google Scholar 

  19. Segers, L., Fontana, A., and Winand, R., Poids specifiques et volumes molaires de melanges d’oxydes fondus du systeme CaO–SiO2–MnO, Electrochim. Acta, 1978, vol. 23, pp. 1275–1280.

    Article  Google Scholar 

  20. Bockris, J.O.M., Tomlinson, J.W., and White, J.L., The structure of the liquid silicates: Partial molar volumes and expansivities, Trans. Faraday Soc., 1956, vol. 52, pp. 299–310.

    Article  Google Scholar 

  21. Heidtkamp, G., and Endell, K. The dependence of density and viscosity on temperature in the system soda–silica, Glastech. Ber., 1936, vol. 14, pp. 89–103.

    Google Scholar 

  22. Shartsis, L., Spinner, S., and Capps, W., Density, expansivity, and viscosity of molten alkali silicates, J. Am. Ceram. Soc., 1952, vol. 35, pp. 155–160.

    Article  Google Scholar 

  23. Coenen, M., Density of cord glasses at high temperatures, Glastech. Ber., 1966, vol. 39, pp. 81–89.

    Google Scholar 

  24. Kekelidze, T.M., Mikiashvili, S.M., Dzhincharadze, T.I., and Khomeriki, R.V., Density and surface tension of oxide melts of the manganese oxide–calcium oxide–silica and manganese oxide–calcium oxide–silica–alumina systems, Izv. Akad. Nauk Gruz. SSR, Ser. Khim., 1978, vol. 4, pp. 240–244.

    Google Scholar 

  25. Lee, J., Hoai, L.T., Choe, J., and Park, J.H., Density measurements of CaO–MnO–SiO2 slags, ISIJ Int., 2012, vol. 52, pp. 2145–2148.

    Article  Google Scholar 

  26. Hino, M., Ejima, T., and Kameda, M., Surface tension, density and viscosity of PbO–Na2O–SiO2 ternary melts, J. Jpn. Inst. Met., 1968, vol. 32, pp. 809–814.

    Article  Google Scholar 

  27. Licko, T. and Danek, V., Densities of melts in the system calcium silicate–calcium magnesium silicate (CaMgSi2O6)–calcium magnesium silicate (Ca2MgSi2O7), Phys. Chem. Glasses, 1982, vol. 23, pp. 67–71.

    Google Scholar 

  28. Lange, R.L. and Carmichael, I.S.E., Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility, Rev. Miner. Geochem., 1990, vol. 24, pp. 25–64

    Google Scholar 

  29. Ghiorso, M.S., and Kress, V.C., An equation of state for silicate melts. II. Calibration of volumetric properties at 105 Pa, Am. J. Sci., 2004, vol. 304, pp. 679–751.

    Article  Google Scholar 

  30. Myssen, B.O., Structure and Properties of Silicate Melts, Amsterdam: Elsevier, 1988.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Institutions CONACyT, SNI, COFAA and IPN for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Romero-Serrano.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonio Romero-Serrano, López-Rodríguez, J., Hernández-Ramírez, A. et al. Evaluation of Molar Volume of Silicate Systems Using a Structural Model. Glass Phys Chem 45, 195–201 (2019). https://doi.org/10.1134/S1087659619030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619030088

Keywords:

Navigation