Skip to main content
Log in

Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L.

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Fungicides are widely used for controlling fungi in crop plants. However, their roles in conferring abiotic stress tolerance are still elusive. In this study, the effect of tebuconazole (TEB) and trifloxystrobin (TRI) on wheat seedlings (Triticum aestivum L. cv. Norin 61) was investigated under salt stress. Seedlings were pre-treated for 48 h with fungicide (1.375 µM TEB + 0.5 µM TRI) and then subjected to salt stress (250 mM NaCl) for 5 days. Salt treatment alone resulted in oxidative damage and increased lipid peroxidation as evident by higher malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. Salt stress also decreased the chlorophyll and relative water content and increased the proline (Pro) content. Furthermore, salt stress increased the dehydroascorbate (DHA) and glutathione disulfide (GSSG) content while ascorbate (AsA), the AsA/DHA ratio, reduced glutathione (GSH) and the GSH/GSSG ratio decreased. However, a combined application of TEB and TRI significantly alleviated growth inhibition, photosynthetic pigments and leaf water status improved under salt stress. Application of TEB and TRI also decreased MDA, electrolyte leakage, and H2O2 content by modulating the contents of AsA and GSH, and enzymatic antioxidant activities. In addition, TEB and TRI regulated K+/Na+ homeostasis by improving the K+/Na+ ratio under salt stress. These results suggested that exogenous application of TEB and TRI rendered the wheat seedling more tolerant to salinity stress by controlling ROS and methylglyoxal (MG) production through the regulation of the antioxidant defense and MG detoxification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Addinsoft (2020) XLSTAT v. 2020.1.1: data analysis and statistics software for Microsoft Excel. Addinsoft, Paris

    Google Scholar 

  • Akbari GA, Hojati M, Modarres-Sanavy SAM, Ghanati F (2011) Exogenously applied hexaconazole ameliorates salinity stress by inducing an antioxidant defense system in Brassica napus L. plants. Pestic Biochem Physiol 100:244–250

    Article  CAS  Google Scholar 

  • Amaro ACE, Ramos ARP, Macedo AC, Ono EO, Rodrigues JD (2018) Effects of the fungicides azoxystrobin, pyraclostrobin and boscalid on the physiology of Japanese cucumber. Sci Hortic 228:66–75

    Article  CAS  Google Scholar 

  • Assaha DVM, Liu L, Mekawy AMM, Ueda A, Nagaoka T, Saneoka H (2015) Effect of salt stress on Na accumulation, antioxidant enzyme activities and activity of cell wall peroxidase of huckleberry (Solanum scabrum) and eggplant (Solanum melongena). Int J Agric Biol 17:1149–1156

    Article  CAS  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teari D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhuyan MHMB, Parvin K, Mohsin SM, Mahmud JA, Hasanuzzaman M, Fujita M (2020) Modulation of cadmium tolerance in rice: insight into vanillic acid-induced upregulation of antioxidant defense and glyoxalase systems. Plants 9:188. https://doi.org/10.3390/plants9020188

    Article  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer S, Scagliusi SM, Da Silva PR, Wiethölter P, Torres GAM, Lau EY, Consoli L (2013) The importance for food security of maintaining rust resistance in wheat. Food Secur 5:157–176

    Article  Google Scholar 

  • Costantini D (2019) Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J Exp Biol 222:jeb194688. https://doi.org/10.1242/jeb.194688

    Article  PubMed  Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Filippou P, Antoniou C, Obata T, Harokopos E, Van Der Kelen K, Kanetis L, Aidinis V, Van Breusegem F, Fernie AR, Fotopoulos V (2016) Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment. J Exp Bot 67:1259–1274

    Article  CAS  PubMed  Google Scholar 

  • Fletcher RA, Gill A, Davis TD, Sankhla N (2000) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138

    CAS  Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Sen Gupta DN, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5:89–103

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hajihashemi S, Kiarostami K, Saboora A, Enteshari S (2007) Exogenously applied paclobutrazol modulates growth in salt-stressed wheat plants. Plant Growth Regul 53:117–128

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York

    Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int 2014:757219. https://doi.org/10.1155/2014/757219

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200. https://doi.org/10.3390/ijms18010200

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Khan MIR, Fujita M (2018a) Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S Afr J Bot 115:50–57

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rohman MM, Anee TI, Huang Y, Fujita M (2018b) Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA–GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems. Gesunde Pflanz 70:185–194

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Alam MM, Nahar K, Mohsin SM, Bhuyan MB, Parvin K, Hawrylak-Nowak B, Fujita M (2019a) Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. Ecotoxicology 28:261–276

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019b) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384. https://doi.org/10.3390/antiox8090384

    Article  CAS  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hossain MS, Hasanuzzaman M, Sohag MMH, Bhuyan MHMB, Fujita M (2019) Acetate-induced modulation of ascorbate: glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik. Physiol Mol Biol Plants 25:443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Abdelrahman M, Tran CD, Nguyen KH, Chu HD, Watanabe Y, Hasanuzzaman M, Mohsin SM, Fujita M, Tran LSP (2020) Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environ Pollut 258:113544. https://doi.org/10.1016/j.envpol.2019.113544

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. S Afr J Bot 74:126–132

    Article  CAS  Google Scholar 

  • Kumar M, Chand R, Dubey RS, Shah K (2015) Effect of tricyclazole on morphology, virulence and enzymatic alterations in pathogenic fungi Bipolaris sorokiniana for management of spot blotch disease in barley. World J Microbiol Biotechnol 31:23–35

    Article  CAS  PubMed  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Sun C, Yu N, Wang C, Zhang T, Bu H (2016) Hexaconazole–Cu complex improves the salt tolerance of Triticum aestivum seedlings. Pestic Biochem Physiol 127:90–94

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Xu X, Lu Z (2018) Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves. J Ginseng Res 42:175–182

    Article  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Methods in enzymology. Academic Press, Cambridge, pp 350–382

    Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) γ-Aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology 26:675–690

    Article  PubMed  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Panneerselvam R (2008) Protection of Vigna unguiculata (L.) Walp. plants from salt stress by paclobutrazol. Colloids Surf B Biointerfaces 61:315–318

    Article  CAS  PubMed  Google Scholar 

  • Manivannan A, Soundararajan P, Muneer S, Ko CH, Jeong BR (2016) Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. Biomed Res Int 2016:3076357. https://doi.org/10.1155/2016/3076357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney C, Mercer PC, Cooke LR, Fraaije BA (2007) Effects of a strobilurin based spray programme on disease control, green leaf area, yield and development of fungicide-resistance in Mycosphaerella graminicola in Northern Ireland. Crop Prot 26:1272–1280

    Article  CAS  Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Bhuyan MHMB, Parvin K, Fujita M (2019) Exogenous tebuconazole and trifloxystrobin regulates reactive oxygen species metabolism toward mitigating salt-induced damages in cucumber seedling. Plants 8:428. https://doi.org/10.3390/plants8100428

    Article  CAS  PubMed Central  Google Scholar 

  • Munns R (2011) Plant adaptations to salt and water stress: differences and commonalities. Adv Bot Res 57:1–32

    Article  CAS  Google Scholar 

  • Muranaka S, Shimizu K, Kato MA (2002) A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica 40:505–515

    Article  Google Scholar 

  • Nabati DA, Schmidt RE, Parrish DJ (1994) Alleviation of salinity stress in Kentucky bluegrass by plant growth regulators and iron. Crop Sci 34:198–202

    Article  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense, and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Parvin K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, Fujita M (2019) Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants 8:247. https://doi.org/10.3390/plants8080247

    Article  CAS  PubMed Central  Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, Fujita M (2020) Exogenous vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and glyoxalase systems. Plant Physiol Biochem 150:109–120

    Article  CAS  PubMed  Google Scholar 

  • Quiles MJ, López NI (2004) Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant grown effects on the chloroplastic NADH dehydrogenase complex. Plant Sci 166:815–823

    Article  CAS  Google Scholar 

  • Rahaie M, Xue GP, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. InTech, Rijeka, pp 367–385

    Google Scholar 

  • Rahman A, Hossain MS, Mahmud JA, Nahar K, Hasanuzzaman M, Fujita M (2016a) Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol Biol Plants 22:291–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016b) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609. https://doi.org/10.3389/fpls.2016.00609

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruske RE, Gooding MJ, Jones SA (2003) The effects of triazole and strobilurin fungicide programmes on nitrogen uptake, partitioning, remobilization and grain N accumulation in winter wheat cultivars. J Agric Sci 140:395–407

    Article  CAS  Google Scholar 

  • Ruske RE, Gooding MJ, Dobraszczyk BJ (2004) Effects of triazole and strobilurin fungicide programmes, with and without late-season nitrogen fertiliser, on the baking quality of Malacca winter wheat. J Cereal Sci 40:1–8

    Article  CAS  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L.Wilczek). Ind J Exp Biol 48:593–600

    CAS  Google Scholar 

  • Sanchez-Casas P, Klesseg DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106:1675–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloid Surf B 60:229–235

    Article  CAS  Google Scholar 

  • Shabani A, Sepaskhah AR, Kamgar-Haghighi AA (2013) Growth and physiologic response of rapeseed (Brassica napus L.) to deficit irrigation, water salinity and planting method. Int J Plant Prod 7:569–596

    CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey RS (2014) Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice. Protoplasma 252:959–975

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Kellõs T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Wu GQ, Wang SM (2012) Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environ 58:121–127

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Methylglyoxal detoxification by glyoxalase system: a survival strategy during environmental stresses. Physiol Mol Biol Plants 11:1–11

    CAS  Google Scholar 

  • Yang CW, Wang P, Li CY, Shi DC, Wang DL (2008) Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46:107–114

    Article  CAS  Google Scholar 

  • Zhang YJ, Zhang X, Chen CJ, Zhou MG, Wang HC (2010) Effects of fungicides JS399-19, azoxystrobin, tebuconazloe, and carbendazim on the physiological and biochemical indices and grain yield of winter wheat. Pestic Biochem Physiol 98:151–157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We acknowledge Dennis Murphy, Ehime University, Japan for critical review and English language correction of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SMM conceived, designed, and performed the experiment and prepared the manuscript. MH designed the experiment and analyzed the data. KN designed the experiment. MSH, MHMBB, and KP actively participated in executing the experiment. MF conceived, designed, and monitored the experiment.

Corresponding author

Correspondence to Masayuki Fujita.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, S.M., Hasanuzzaman, M., Nahar, K. et al. Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L.. Physiol Mol Biol Plants 26, 1139–1154 (2020). https://doi.org/10.1007/s12298-020-00810-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00810-5

Keywords

Navigation