Skip to main content
Log in

Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Plant growth promoting endophytic bacteria have been identified as potential growth regulators of crops. Endophytic bacterium, Sphingomonas sp. LK11, was isolated from the leaves of Tephrosia apollinea. The pure culture of Sphingomonas sp. LK11 was subjected to advance chromatographic and spectroscopic techniques to extract and isolate gibberellins (GAs). Deuterated standards of [17, 17-2H2]-GA4, [17, 17-2H2]-GA9 and [17, 17-2H2]-GA20 were used to quantify the bacterial GAs. The analysis of the culture broth of Sphingomonas sp. LK11 revealed the existence of physiologically active gibberellins (GA4: 2.97 ± 0.11 ng/ml) and inactive GA9 (0.98 ± 0.15 ng/ml) and GA20 (2.41 ± 0.23). The endophyte also produced indole acetic acid (11.23 ± 0.93 μM/ml). Tomato plants inoculated with endophytic Sphingomonas sp. LK11 showed significantly increased growth attributes (shoot length, chlorophyll contents, shoot, and root dry weights) compared to the control. This indicated that such phyto-hormones-producing strains could help in increasing crop growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, M., Sako, Y., and Ishida, Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32, 424–432.

    Article  CAS  Google Scholar 

  • Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Uni. Sci. 26, 1–20.

    Google Scholar 

  • Albermann, S., Linnemannstöns, P., and Tudzynski, B. 2013. Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl. Microbiol. Biotechnol. 97, 2979–2995.

    Article  CAS  PubMed  Google Scholar 

  • Aly, A.H., Debbab, A., Kjer, J., and Proksch, P. 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Div. 41, 1–16.

    Article  Google Scholar 

  • Ansari, M.W., Trivedi, D.K., Sahoo, R.K., Gill, S.S., and Tuteja, N. 2013. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol. Biochem. 70, 403–410.

    CAS  PubMed  Google Scholar 

  • Atzhorn, R., Crozier, A., Wheeler, C.T., and Sandberg, G. 1998. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175, 532–538.

    Article  Google Scholar 

  • Bal, H.B., Das, S., Dangar, T.K., and Adhya, T.K. 2013. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J. Basic Microbiol. doi: 10.1002/jobm.201200445.

    Google Scholar 

  • Barazani, O. and Friedman, J. 1999. Is IAA the major growth factor secreted from plant growth mediating bacteria. J. Chem. Ecol. 25, 2397–2406.

    Article  CAS  Google Scholar 

  • Bascom-Slack, C.A., Ma, C., Moore, E., Babbs, E., Fenn, K., Greene, J.S., Hann, B.D., Keehner, J., Kelley-Swift, E.G., Kembaiyan, V., and et al. 2009. Multiple, novel biologically active endophytic actinomycetes isolated from Upper Amazonian rainforests. Microb. Ecol. 58, 374–383.

    Article  PubMed  Google Scholar 

  • Bastian, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R., and Bottini, R. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul. 24, 7–11.

    Article  CAS  Google Scholar 

  • Bhore, S.J., Preveena, J., and Kandasamy, K.I. 2013. Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species. Phcog. Res. 5, 134–137.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bömke, C., Rojas, M.C., Gong, F., Hedden, P., and Tudzynski, B. 2008. Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl. Environ. Microbiol. 74, 5325–5339.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bottini, R., Cassán, F., and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65, 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Brader, G., Stephane, C., Birgit, M., Friederike, T., and Angela, S. 2014. Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 27, 30–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castanheira, N., Dourado, A.C., Alves, P.I., Cortés-Pallero, A.M., Delgado-Rodríguez, A.I., Prazeres, Â., Borges, N., Sánchez, C., Crespo, M.T.B., and Fareleira, P. 2014. Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiol. Res. doi. org/10.1016/j.micres.2013.12.010.

    Google Scholar 

  • Cerny-Koening, T.A., Faust, J.E., and Rajapakse, N.C. 2004. Role of gibberellin A4 and gibberellin and biosynthesis inhibitors on flowering and stem elongation in Petunia under modified light environments. Hort. Sci. 4, 134–137.

    Google Scholar 

  • Christina, A., Christapher, V., and Bhore, S.J. 2013. Endophytic bacteria as a source of novel antibiotics: An overview. Pharmacog. Rev. 7, 11–16.

    Article  CAS  Google Scholar 

  • Davicre, J.M. and Achard, P. 2013. Gibberellin signaling in plants. Development 140, 1147–1151.

    Article  Google Scholar 

  • Duca, D., Lorv, J., Patten, C.L., Rose, D., and Glick, B.R. 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek doi. 10.1007/s10482-013-0095-y.

    Google Scholar 

  • Gaiero, J.R., McCall, C.A., Thompson, K.A., Day, N.J., Best, A.S., and Dunfield, K.E. 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100, 1738–1750.

    Article  PubMed  Google Scholar 

  • Gutierrez-Manero, F.J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R., and Talon, M. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant 111, 206–211.

    Article  Google Scholar 

  • Hamayun, M., Khan, S.A., Khan, A.L., Rehman, G., Sohn, E.Y., Shah, A.A., Kim, S.K., Joo, G.J., and Lee, I.J. 2009. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol. 19, 1244–1249.

    CAS  PubMed  Google Scholar 

  • Higginbotham, S.J., Arnold, A.E., Ibañez, A., Spadafora, C., Coley, P.D., and Kursar, T.A. 2013. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8, e731–2.

    Article  Google Scholar 

  • Hilbert, M., Nostadt, R., and Zuccaro, A. 2013. Exogenous auxin affects the oxidative burst in barley roots colonized by Piriformospora indica. Plant Signal. Behav. 8, E23572/1-E23572–5.

    Article  Google Scholar 

  • Hussain, A. and Hasnain, S. 2011. Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J. Microbiol. Biotechnol. 27, 26–5.

    Google Scholar 

  • Islam, M.D.R., Sultana, T., Joe, M.M., Yim, W., Cho, J.C., and Sa, T. 2013. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic Microbiol. 53, 1004–1015.

    Article  CAS  PubMed  Google Scholar 

  • Jasim, B., John, C.J., Mathew, J., and Radhakrishnan, E.K. 2013. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul. 71, 1–11.

    Article  CAS  Google Scholar 

  • Joo, G.J., Kang, S.M., Hamayun, M., Kim, S.K., Na, C.I., Shin, D.H., and Lee, I.J. 2009. Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J. Mcrobiol. 47, 167–171.

    Article  CAS  Google Scholar 

  • Joo, G.J., Kim, Y.M., Lee, I.J., Song, K.S., and Rhee, I.K. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26, 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.M., Khan, A.L., Waqas, M., You, Y.H., Kim, J.H., Kim, J.G., Hamayun, M., and Lee, I.J. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. doi.10.1080/17429145.2014.894587.

    Google Scholar 

  • Khan, Z. and Doty, S.L. 2009. Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322, 1–7.

    Article  Google Scholar 

  • Kilbane, J.J., Daram, A., Abbasian, J., and Kayser, K.J. 2002. Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem. Biophys. Res. Commun. 297, 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Lata, H., Li, X.C., Silva, B., Moraes, R.M., and Halda-Alija, L. 2006. Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Culture 85, 353–359.

    Article  CAS  Google Scholar 

  • Lee, S., Flores-Encarnacion, M., Contreras-Zentella, M., Garcia, F.L., Escamilla, J.E., and Kennedy, C. 2004. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J. Bacteriol. 186, 5384–5391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, I.J., Foster, K., and Morgan, P.W. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116, 1003–1011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J., Charles, P., and Van Gijsegem, F. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162, 328–334.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata, S., Yamaji, K., Nomura, N., and Ishimoto, H. 2014. Root endophytes enhance stress-tolerance of Cicuta virosa L. growing in a mining pond of eastern Japan. Plant Speci. Biol. doi: 10.1111/1442-1984.12039.

    Google Scholar 

  • Naveed, M., Mitter, B., Yousaf, S., Pastar, M., Afzal, M., and Sessitsch, A. 2013. The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol. Ferti. Soils 50, 249–262.

    Article  Google Scholar 

  • Patten, C. and Glick, B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795–3801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin, S., Xing, K., Jiang, J.H., Xu, L.H., and Li, W.J. 2011. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol. 89, 457–473.

    Article  CAS  PubMed  Google Scholar 

  • Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., Greer, C., Espino, L., Doty, S.L., and Rodriguez, R.J. 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6, e14823.

    Article  Google Scholar 

  • Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J., and Dowling, D.N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Let. 278, 1–9.

    Article  CAS  Google Scholar 

  • Sambrook, J. and Russel, D.W. 2001. Molecular cloning, (third ed.), Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Schulz, B. and Boyle, C. 2005. The endophytic continuum. Mycological. Res. 109, 661–686.

    Article  Google Scholar 

  • Selvakumar, G., Kim, K., Hu, S., and Sa, T. 2014. Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. In Ahmad, P. and Wani, M.R. (eds.), Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, pp. 115–144. Springer New York, USA.

    Chapter  Google Scholar 

  • Sheng, X.F., Xia, J.J., Jiang, C.Y., He, L.Y., and Qian, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Poll. 156, 1164–1170.

    Article  CAS  Google Scholar 

  • Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G., Daisy, B., Castillo, U., and Harper, J. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Supaphon, P., Phongpaichit, S., Rukachaisirikul, V., and Sakayaroj, J. 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 8, e72520.

    Article  Google Scholar 

  • Tehler, A. 1995. Morphological data, molecular data, and total evidence in phylogenetic analysis. Can., J. Bot. 73, 667–676.

    Article  Google Scholar 

  • Thepsukhon, A., Choonluchanon, S., Tajima, S., Nomura, M., and Ruamrungsri, S. 2013. Identification of endophytic bacteria associated with N2 fixation and indole acetic acid synthesis as growth promoters in Curcuma alismatifolia gagnep. J. Plant Nutri. 36, 33–39.

    Article  Google Scholar 

  • Tivendale, N.D., Ross, J.J., and Cohen, J.D. 2014. The shifting paradigms of auxin biosynthesis. Trends Plant Sci. 19, 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Troncoso, C., González, X., Bömke, C., Tudzynski, B., Gong, F., Hedden, P., and Rojas, M.C. 2010. Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. Phytochem. 71, 1322–1331.

    Article  CAS  Google Scholar 

  • Verma, A., Kukreja, K., Pathak, D.V., Suneja, S., and Narula, N. 2001. In vitro production of plant growth regulators (PGRs) by Azorobacter chroococcum. Indian, J. Microbiol. 41, 305–307.

    Google Scholar 

  • Weyens, N., Gielen, M., Beckers, B., Boulet, J., van der Lelie, D., Taghavi, S., Carleer, R., and Vangronsveld, J. 2014. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Plant Biol. doi: 10.1111/plb.12141.

    Google Scholar 

  • Xu, X., van Lammeren, A.A.M., Vermeer, E., and Vreugdenhil, D. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 117, 575–584.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanni, Y.G., Rizk, R.Y., Abd El-Fattah, F.K., Squartini, A., Corich, V., Giacomini, A., de Bruijn, F., Rademaker, J., Maya-Flores, J., Ostrom, P., and et al. 2001. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol. 28, 845–870.

    CAS  Google Scholar 

  • Yu, F.B., Shan, S.D., Luo, L.P., Guan, L.B., and Qin, H. 2013. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J. Environ. Sci. Health, B. 48, 198–207.

    Article  CAS  Google Scholar 

  • Zin, N.M., Sarmin, N.I., Ghadin, N., Basri, D.F., Sidik, N.M., Hess, W.M., and Strobel, G.A. 2007. Bioactive endophytic streptomycetes from the Malay Pensinsula. FEMS Microbiol. Lett. 274, 83–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Al-Harrasi or In-Jung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.L., Waqas, M., Kang, SM. et al. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol. 52, 689–695 (2014). https://doi.org/10.1007/s12275-014-4002-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4002-7

Keywords

Navigation