Skip to main content
Log in

Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous carbon materials play essential roles in electrocatalysis and electrochemical energy storage. It is of significant importance to rationally design and tune their porous structure and active sites for achieving high electrochemical activity and stability. Herein, we develop a novel approach to tune the morphology of porous carbon materials (PCM) by embedding fullerene C60, achieving improved performance of oxygen reduction reaction (ORR) and lithium-sulfur (Li-S) battery. Owing to the strong interaction between C60 and imidazole moieties, pomegranate-like hybrid of C60-embedded zeolitic imidazolate framework (ZIF-67) precursor is synthesized, which is further pyrolyzed to form C60-embedded cobalt/nitrogen-codoped porous carbon materials (abbreviated as C60@Co-N-PCM). Remarkably, the unique structure of C60@Co-N-PCM offers excellent ORR electrocatalytic activity and stability in alkaline solutions, outperforming the commercial Pt/C (20 wt.%) catalyst. Besides, C60@Co-N-PCM as a novel cathode delivers a high specific capacity of ∼ 900 mAh·g−1 at 0.2 C rate in Li-S batteries, which is superior to the pristine ZIF-67-derived PCM without embedding C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    Article  CAS  Google Scholar 

  2. Li, W. Q.; Fu, H. Q.; Cao, Y. H.; Wang, H. J.; Yu, H.; Qiao, Z. W.; Liang, H.; Peng, F. Mn3O4@C nanoparticles supported on porous carbon as bifunctional oxygen electrodes and their electrocatalytic mechanism. ChemElectroChem 2019, 6, 359–368.

    Article  CAS  Google Scholar 

  3. Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for Ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.

    Article  CAS  Google Scholar 

  4. Lu, J.; Zhou, W. J.; Wang, J. K.; Ke, Y. T.; Yang, L. J.; Zhou, K.; Liu, X. J.; Tang, Z. H.; Li, L. G.; Chen, S. W. Core-shell nanocomposites based on gold nanoparticle@zinc-iron-embedded porous carbons derived from metal-organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions. ACS Catal. 2016, 6, 1045–1053.

    Article  CAS  Google Scholar 

  5. Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv. Energy Mater. 2020, 10, 1900375.

    Article  CAS  Google Scholar 

  6. Xia, W.; Qu, C.; Liang, Z. B.; Zhao, B. T.; Dai, S. G.; Qiu, B.; Jiao, Y.; Zhang, Q. B.; Huang, X. Y.; Guo, W. H. et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 2017, 17, 2788–2795.

    Article  CAS  Google Scholar 

  7. Xu, X. L.; Shi, W. H.; Li, P.; Ye, S. F.; Ye, C. Z.; Ye, H. J.; Lu, T. M.; Zheng, A. A.; Zhu, J. X.; Xu, L. X. et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 2017, 29, 6058–6065.

    Article  CAS  Google Scholar 

  8. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    Article  CAS  Google Scholar 

  9. Liu, Y.; Fang, Y. J.; Zhao, Z. W.; Yuan, C. Z.; Lou, X. W. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803052.

    Article  CAS  Google Scholar 

  10. He, J. R.; Chen, Y. F.; Manthiram, A. MOF-derived cobalt sulfide grown on 3D graphene foam as an efficient sulfur host for long-life lithium-sulfur batteries. iScience 2018, 4, 36–43.

    Article  CAS  Google Scholar 

  11. He, Y. F.; Zhuang, X. D.; Lei, C. J.; Lei, L. C.; Hou, Y.; Mai, Y. Y.; Feng, X. L. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today 2019, 24, 103–119.

    Article  CAS  Google Scholar 

  12. Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.

    Article  CAS  Google Scholar 

  13. Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

    Article  CAS  Google Scholar 

  14. Hua, X. D.; Sun, X. H.; Yoo, S. J.; Evanko, B.; Fan, F. R.; Cai, S.; Zheng, C. M.; Hu, W. B.; Stucky, G. D. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 2019, 56, 828–839.

    Article  CAS  Google Scholar 

  15. Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

    Article  CAS  Google Scholar 

  16. Yang, J.; Sun, H. Y.; Liang, H. Y.; Ji, H. X.; Song, L.; Gao, C.; Xu, H. X. A highly efficient metal-free oxygen reduction electrocatalyst assembled from carbon nanotubes and Graphene. Adv. Mater. 2016, 28, 4606–4613.

    Article  CAS  Google Scholar 

  17. Zheng, L.; Yu, S. Y.; Lu, X. Y.; Fan, W. J.; Chi, B.; Ye, Y. K.; Shi, X. D.; Zeng, J. H.; Li, X. H.; Liao, S. J. Two-dimensional bimetallic Zn/Fe-metal-organic framework (MOF)-derived porous carbon nanosheets with a high density of single/paired Fe atoms as high-performance oxygen reduction catalysts. ACS Appl. Mater. Interfaces 2020, 12, 13878–13887.

    Article  CAS  Google Scholar 

  18. Xu, X. T.; Yang, T.; Zhang, Q. W.; Xia, W.; Ding, Z. B.; Eid, K.; Abdullah, A. M.; Hossain, S. A.; Zhang, S. H.; Tang, J. et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 2020, 390, 124493.

    Article  CAS  Google Scholar 

  19. Li, Z. X.; Yang, B. L.; Zou, K. Y.; Kong, L. J.; Yue, M. L.; Duan, H. H. Novel porous carbon nanosheet derived from a 2D Cu-MOF: Ultrahigh porosity and excellent performances in the supercapacitor cell. Carbon 2019, 144, 540–548.

    Article  CAS  Google Scholar 

  20. Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363.

    Article  CAS  Google Scholar 

  21. Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.

    Article  CAS  Google Scholar 

  22. Wu, H. B.; Lou, X. W. (David). Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, 9252–9267.

    Article  CAS  Google Scholar 

  23. Chen, H. R.; Shen, K.; Mao, Q.; Chen, J. Y.; Li, Y. W. Nanoreactor of MOF-derived yolk-shell Co@C-N: Precisely controllable structure and enhanced catalytic activity. ACS Catal. 2018, 8, 1417–1426.

    Article  CAS  Google Scholar 

  24. Zhu, L.; Zheng, D. Z.; Wang, Z. F.; Zheng, X. S.; Fang, P. P.; Zhu, J. F.; Yu, M. H.; Tong, Y. X.; Lu, X. H. A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 2018, 30, 1805268.

    Article  CAS  Google Scholar 

  25. Song, X. K.; Chen, S.; Guo, L. L.; Sun, Y.; Li, X. P.; Cao, X.; Wang, Z. X.; Sun, J. H.; Lin, C.; Wang, Y. General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications. Adv. Energy Mater. 2018, 8, 1801101.

    Article  CAS  Google Scholar 

  26. Zhou, A. W.; Guo, R. M.; Zhou, J.; Dou, Y. B.; Chen, Y.; Li, J. R. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustainable Chem. Eng. 2018, 6, 2103–2111.

    Article  CAS  Google Scholar 

  27. Tong, Y. P.; Liang, Y.; Hu, Y. X.; Shamsaei, E.; Wei, J.; Hao, Y. X.; Mei, W. W.; Chen, X.; Shi, Y. R.; Wang, H. T. Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. J. Alloys Compd. 2020, 816, 152684.

    Article  CAS  Google Scholar 

  28. Yang, L. Y.; Feng, Y.; Yu, D. B.; Qiu, J. H.; Zhang, X. F.; Dong, D. H.; Yao, J. F. Design of ZIF-based CNTs wrapped porous carbon with hierarchical pores as electrode materials for supercapacitors. J. Phys. Chem. Solids 2019, 125, 57–63.

    Article  CAS  Google Scholar 

  29. Guan, J.; Zhong, X. W.; Chen, X.; Zhu, X. J.; Li, P. L.; Wu, J. H.; Lu, Y. L.; Yu, Y.; Yang, S. F. Expanding pore sizes of ZIF-8-derived nitrogen-doped microporous carbon Via C60 embedding: Toward improved anode performance for the lithium-ion battery. Nanoscale 2018, 10, 2473–2480.

    Article  CAS  Google Scholar 

  30. Guan, J.; Chen, X.; Wei, T.; Liu, F. P.; Wang, S.; Yang, Q.; Lu, Y. L.; Yang, S. F. Directly bonded hybrid of graphene nanoplatelets and fullerene: Facile solid-state mechanochemical synthesis and application as carbon-based electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 4139–4146.

    Article  CAS  Google Scholar 

  31. Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

    Article  CAS  Google Scholar 

  32. Lin, K. Y. A.; Chang, H. A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 2015, 139, 624–631.

    Article  CAS  Google Scholar 

  33. Guo, X. L.; Xing, T. T.; Lou, Y. B.; Chen, J. X. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J. Solid State Chem. 2016, 235, 107–112.

    Article  CAS  Google Scholar 

  34. Bustamante, E. L.; Fernández, J. L.; Zamaro, J. M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interf. Sci. 2014, 424, 37–43.

    Article  CAS  Google Scholar 

  35. Li, X. Y.; Gao, X. Y.; Ai, L. H.; Jiang, J. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 2015, 274, 238–246.

    Article  CAS  Google Scholar 

  36. Liu, Y. J.; Gao, P. F.; Zhang, T. M.; Zhu, X. J.; Zhang, M. M.; Chen, M. Q.; Du, P. W.; Wang, G. W.; Ji, H. X.; Yang, J. L. et al. Azide passivation of black phosphorus nanosheets: Covalent functionalization affords ambient stability enhancement. Angew. Chem, Int. Ed. 2019, 58, 1479–1483.

    Article  CAS  Google Scholar 

  37. Zhu, X. J.; Zhang, T. M.; Jiang, D. C.; Duan, H. L.; Sun, Z. J.; Zhang, M. M.; Jin, H. C.; Guan, R. N.; Liu, Y. J.; Chen, M. Q. et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 2018, 9, 4177.

    Article  CAS  Google Scholar 

  38. Zhang, L. Y.; Lan, T. M.; Wang, J.; Wei, L. M.; Yang, Z.; Zhang, Y. F. Template-free synthesis of one-dimensional cobalt nanostructures by hydrazine reduction route. Nanoscale Res. Lett. 2011, 6, 58.

    Google Scholar 

  39. Li, X. Y.; Zeng, C. M.; Jiang, J.; Ai, L. H. Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. J. Mater. Chem. A 2016, 4, 7476–7482.

    Article  CAS  Google Scholar 

  40. Jiang, J. Q.; Wei, F. X.; Yu, G. X.; Sui, Y. W. Co3O4 electrode prepared by using metal-organic framework as a host for supercapacitors. J. Nanomater. 2015, 76, 80.

    Google Scholar 

  41. Qiu, B. C.; Deng, Y. X.; Du, M. M.; Xing, M. Y.; Zhang, J. L. Ultradispersed cobalt ferrite nanoparticles assembled in graphene aerogel for continuous photo-fenton reaction and enhanced lithium storage performance. Sci. Rep. 2016, 6, 29099.

    Article  CAS  Google Scholar 

  42. Kuzmany, H.; Matus, M.; Burger, B.; Winter, J. Raman scattering in C60 fullerenes and fulleride. Adv. Mater. 1994, 6, 731–745.

    Article  CAS  Google Scholar 

  43. Fu, J.; Cano, Z. P.; Yu, M. G.; Park, A.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

    Article  CAS  Google Scholar 

  44. Xia, W.; Zou; R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568.

    Article  CAS  Google Scholar 

  45. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–554.

    Article  CAS  Google Scholar 

  46. Shen, S. D.; Garcia-Bennett, A. E.; Liu, Z.; Lu, Q. Y.; Shi, Y. F.; Yan, Y.; Yu, C. Z.; Liu, W. C.; Cai, Y.; Terasaki, O. et al. Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J. Am. Chem. Soc. 2005, 127, 6780–6787.

    Article  CAS  Google Scholar 

  47. Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and singleatom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 131, 5413–5418.

    Article  Google Scholar 

  48. Lian, Y. B.; Yang, W. J.; Zhang, C. F.; Sun, H.; Deng, Z.; Xu, W. J.; Song, L.; Ouyang, Z. W.; Wang, Z. X.; Guo, J. et al. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 286–294.

    Article  CAS  Google Scholar 

  49. Sharif, T.; Gracia-Espino, E.; Chen, A. R.; Hu, G. Z.; Wågberg, T. Oxygen reduction reactions on single-or few-atom discrete active sites for heterogeneous catalysis. Adv. Energy Mater. 2019, 10, 1902084.

    Article  CAS  Google Scholar 

  50. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    Article  CAS  Google Scholar 

  51. Yang, H. B.; Miao, J. W.; Huang, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.

    Article  CAS  Google Scholar 

  52. Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705219.

    Article  CAS  Google Scholar 

  53. Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang, Q. H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.

    Article  CAS  Google Scholar 

  54. Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800013.

    Article  CAS  Google Scholar 

  55. Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

    Article  CAS  Google Scholar 

  56. Lei, T. Y.; Xie, Y. M.; Wang, X. F.; Miao, S. Y.; Xiong, J.; Yan, C. L. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 2017, 13, 1701013.

    Article  CAS  Google Scholar 

  57. Luo, L.; Chung, S. H.; Asl, H. Y.; Manthiram, A. Long-life lithium-sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 2018, 30, 1804149.

    Article  CAS  Google Scholar 

  58. Li, G.; Wang, X. L.; Seo, M. H.; Li, M.; Ma, L.; Yuan, Y. F.; Wu, T. P.; Yu, A. P.; Wang, S.; Lu, J. et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 2018, 9, 705.

    Article  CAS  Google Scholar 

  59. Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.

    Article  CAS  Google Scholar 

  60. Li, L.; Chen, L.; Mukherjee, S.; Gao, J.; Sun, H.; Liu, Z. B.; Ma, X. L.; Gupta, T.; Singh, C. V.; Ren, W. C. et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1602734.

    Article  CAS  Google Scholar 

  61. Pu, J.; Shen, Z. H.; Zheng, J. X.; Wu, W. L.; Zhu, C.; Zhou, Q. W.; Zhang, H. G.; Pan, F. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 2017, 37, 7–14.

    Article  CAS  Google Scholar 

  62. Paolella, A.; Demers, H.; Chevallier, P.; Gagnon, C.; Girard, G.; Delaporte, N.; Zhu, W.; Vijh, A.; Guerfi, A.; Zaghib, K. A platinum nanolayer on lithium metal as an interfacial barrier to shuttle effect in Li-S batteries. J. Power Sources, 2019, 427, 201–206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (No. 2017YFA0402800), the National Natural Science Foundation of China (Nos. 51925206 and U1932214), and National Synchrotron Radiation Laboratory (UN2017LHJJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiguo Cao or Shangfeng Yang.

Electronic Supplementary Material

12274_2020_3260_MOESM1_ESM.pdf

Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, S., Lei, Z. et al. Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Res. 14, 2596–2605 (2021). https://doi.org/10.1007/s12274-020-3260-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3260-4

Keywords

Navigation