Skip to main content

Advertisement

Log in

Zn/Co-ZIF-derived bi-metal embedded N-doped porous carbon as anodes for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the unique Zn-Co nitrogen-doped porous carbon (Zn-Co/NPC) polyhedrons have been successfully synthesized via pyrolysis of bimetallic zeolitic imidazolate frameworks (ZIFs) precursor under N2, wherein the metallic Co and Zn particles are dispersed in the porous carbon matrix. The obtained porous carbons show a high surface area (315.67 m2 g−1) and contain plenty of mesopores. The unique mesoporous structure benefits from either the carbonization of organic ligands and the catalytic effect of metallic Co in calcination process or the elimination of a certain amount of metal species in acid dissolution. As an anode material for lithium-ion batteries, the Zn-Co/NPC particles exhibit superior lithium storage capabilities with excellent cycling properties. It demonstrates a high discharge capacity of 970 mA h g−1 at 0.1 A g−1. Besides, a reversible capacity of 813.5 mA h g−1 was retained at a much higher current density of 0.5 A g−1 after 500 cycles. The enhanced electrochemical performance was attributed to the unique microstructure, nitrogen doping, and the synergistic effect of Zn and Co embedded in carbon matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S. Whittingham, Chem. Rev. 46, 11414–11443 (2015)

    Google Scholar 

  2. H.J. Smith, Science 351, 236–238 (2016)

    Google Scholar 

  3. L. Cui, R. Ruffo, C. Chan, H. Peng, Y. Cui, Nano Lett. 9, 491–495 (2009)

    CAS  Google Scholar 

  4. B. Kang, G. Ceder, Nature 458, 190–193 (2009)

    CAS  Google Scholar 

  5. M. Ebner, F. Marone, M. Stampanoni, V. Wood, Sci. 342, 716–720 (2013)

    CAS  Google Scholar 

  6. N.R. Van, Nature 507, 26–28 (2014)

    Google Scholar 

  7. Y. Wu, E. Rahm, R. Holze, J. Power Sour. 114, 228–236 (2003)

    CAS  Google Scholar 

  8. N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu, Y. Qian, Energy Environ. Sci. 8, 3187–3191 (2015)

    CAS  Google Scholar 

  9. C. Chan, X. Zhang, Y. Cui, Nano Lett. 8, 307–309 (2008)

    CAS  Google Scholar 

  10. X. Huang, S. Cui, J. Chang, P.B. Hallac, C.R. Fell, Y. Luo, B. Metz, J. Jiang, P.T. Hurley, J. Chen, Angew. Chem. Int. Ed. 127, 1510–1513 (2015)

    Google Scholar 

  11. Y.Z. Pan, L. Yin, M.Q. Li, Ceram. Int. 45, 12072–12079 (2019)

    CAS  Google Scholar 

  12. Q. Yang, C.Q. Feng, J.W. Liu, Z.P. Guo, Appl. Surf. Sci. 443, 401–406 (2018)

    CAS  Google Scholar 

  13. L. Ma, X. Pei, D. Mo, S.S. Lyu, Y. Fu, Ceram. Int. 44, 22664–22670 (2018)

    CAS  Google Scholar 

  14. G. Zhang, X.W. Lou, Angew. Chem. Int. Ed. 53, 9041–9044 (2014)

    CAS  Google Scholar 

  15. L. David, R. Bhandavat, G. Singh, ACS Nano 8, 1759–1770 (2014)

    CAS  Google Scholar 

  16. L. Dai, D. Chang, J.B. Baek, W. Lu, Small 8, 1130–1166 (2012)

    CAS  Google Scholar 

  17. S. Zhou, Z. Zheng, T. Mei, X. Wang, Carbon 144, 127–146 (2019)

    CAS  Google Scholar 

  18. W.S. Kim, J. Choi, S. Hong, Nano Res. 9, 2174–2181 (2016)

    CAS  Google Scholar 

  19. J. Liu, N.P. Wickramaratne, S. Qiao, M. Jaroniec, Nat. Mater. 14, 763–774 (2015)

    CAS  Google Scholar 

  20. T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350, 1508–1513 (2015)

    CAS  Google Scholar 

  21. L. Wang, J. Ju, N. Deng, B. Cheng, W. Kang, Mater. Lett. 240, 39–43 (2019)

    Google Scholar 

  22. J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 137, 1572–1580 (2015)

    CAS  Google Scholar 

  23. M. Sevilla, A.B. Fuertes, Carbon 44, 468–474 (2006)

    CAS  Google Scholar 

  24. J. Yuan, C. Giordano, M. Antonietti, Chem. Mater. 22, 5003–5012 (2010)

    CAS  Google Scholar 

  25. B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130, 5390–5391 (2008)

    CAS  Google Scholar 

  26. S. Li, Q. Xu, Energy Environ. Sci. 6, 1656–1683 (2013)

    CAS  Google Scholar 

  27. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. 103, 10186–10191 (2006)

    CAS  Google Scholar 

  28. F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5, 5261 (2014)

    CAS  Google Scholar 

  29. N.L. Torad, R.R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C.C. Hu, Y. Yamauchi, Chemistry 20, 7895–7900 (2016)

    Google Scholar 

  30. N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, Y. Yamauchi, Small 10, 2096–2107 (2014)

    CAS  Google Scholar 

  31. Z. Wu, W. Ren, L. Xu, F. Li, H. Cheng, ACS Nano 5, 5463–5471 (2011)

    CAS  Google Scholar 

  32. S. Kundu, Y. Wang, W. Xia, M. Muhle, J. Phys. Chem. C 112, 16869–16878 (2008)

    CAS  Google Scholar 

  33. L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, Nanoscale 6, 6590–6602 (2014)

    CAS  Google Scholar 

  34. Y. Xiao, P. Sun, M. Cao, ACS Nano 8, 7846–7857 (2014)

    CAS  Google Scholar 

  35. Y. Xiao, M. Cao, L. Ren, C. Hu, Nanoscale 4, 7469–7474 (2012)

    CAS  Google Scholar 

  36. Y. Matsumura, S. Wang, J. Mondori, J. Electrochem. Soc. 142, 2914–2918 (1995)

    CAS  Google Scholar 

  37. Y. Tan, K. Zhu, D. Li, F. Bai, Y. Wei, P. Zhang, Chem. Eng. J. 258, 93–100 (2014)

    CAS  Google Scholar 

  38. N. Mahmood, C. Zhang, F. Liu, J. Zhu, Y. Hou, ACS Nano 7, 10307–10318 (2013)

    CAS  Google Scholar 

  39. Z. Wang, X. Xiong, L. Qie, Y. Huang, Electrochim. Acta 106, 320–326 (2013)

    CAS  Google Scholar 

  40. K. Tang, R.J. White, X. Mu, M.M. Titirici, P.A. Van Aken, J. Maier, ChemSusChem 5, 400–403 (2012)

    CAS  Google Scholar 

  41. T. Chen, B. Cheng, R. Chen, Y. Hu, H. Lv, G. Zhu, Y. Wang, L. Ma, J. Liang, Z. Tie, Z. Jin, J. Liu, ACS Appl. Mater. Interfaces 8, 26834–26841 (2016)

    CAS  Google Scholar 

  42. M. Huang, K. Mi, J. Zhang, H. Liu, T. Yu, A. Yuan, Q. Kong, S. Xiong, J. Mater. Chem. A. 5, 266–274 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Program of Hebei Province (No. 16273706D), the Basic Innovation Team of Tangshan (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, Z., Yao, S. et al. Zn/Co-ZIF-derived bi-metal embedded N-doped porous carbon as anodes for lithium-ion batteries. J Mater Sci: Mater Electron 31, 13889–13898 (2020). https://doi.org/10.1007/s10854-020-03948-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03948-w

Navigation