Skip to main content
Log in

Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting using semiconductors offers a promising way to convert renewable solar energy to clean hydrogen fuels. However, due to the sluggish reaction kinetics of water oxidation, significant charge recombination occurred at the photoanode/electrolyte interface and cause decrease of its PEC performance. To reduce the surface recombination, we deposit different transition metal complexes on BiVO4 nanocone arrays by a versatile light driven in-situ two electrode photodeposition approach without applied bias. Conformal cobalt phosphate “Co-Pi”, nickel borate “Ni-Bi” and manganese phosphate “Mn-Pi” complexes were deposited on BiVO4 nanocone arrays to form core-shell structure photoanode, all of which lead to enhanced photoelectrochemical performance. The photocurrent of the Co-Pi/BiVO4 photoanode under front-side illumination for 5 min is increased by 4 folds comparing to that of bare BiVO4 photoanode at 0.6 V vs. RHE, reaching a hole transfer efficiency as high as 94.5% at 1.23 V vs. RHE. The proposed photodeposition strategy is simple and efficient, and can be extended to deposite cocatalyst on other semiconductors with a valence band edge located at a potential more positive than the oxidation potential of transition metal ion in the cocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972, 238, 37–38.

    Article  CAS  Google Scholar 

  2. Grätzel, M. Photoelectrochemical cells. Nature2001, 414, 338–344.

    Article  Google Scholar 

  3. Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics2012, 6, 511–518.

    Article  CAS  Google Scholar 

  4. Guo, L. J.; Chen, Y. B.; Su, J. Z.; Liu, M. C.; Liu, Y. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy2019, 172, 1079–1086.

    Article  CAS  Google Scholar 

  5. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev.2013, 42, 2294–2320.

    Article  CAS  Google Scholar 

  6. Gür, T. M.; Bent, S. F.; Prinz, F. B. Nanostructuring materials for solar-to-hydrogen conversion. J. Phys. Chem. C2014, 118, 21301–21315.

    Article  Google Scholar 

  7. Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater.2016, 1, 15010.

    Article  CAS  Google Scholar 

  8. Su, J. Z.; Vayssieres, L. A place in the sun for artificial photosynthesis? ACS Energy Lett.2016, 1, 121–135.

    Article  CAS  Google Scholar 

  9. Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater.2001, 13, 4624–4628.

    Article  CAS  Google Scholar 

  10. Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science2014, 343, 990–994.

    Article  CAS  Google Scholar 

  11. Jo, W. J.; Kang, H. J.; Kong, K. J.; Lee, Y. S.; Park, H.; Lee, Y.; Buonassisi, T.; Gleason, K. K.; Lee, J. S. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proc. Natl. Acad. Sci. USA2015, 112, 13774–13778.

    Article  CAS  Google Scholar 

  12. Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev.2013, 42, 2321–2337.

    Article  CAS  Google Scholar 

  13. Gao, B.; Wang, T.; Fan, X. L.; Gong, H.; Meng, X. G.; Li, P.; Feng, Y. Y.; Huang, X. L.; He, J. P.; Ye, J. H. Selective deposition of Ag3PO4 on specific facet of BiVO4 nanoplate for enhanced photoelectrochemical performance. Sol. RRL2018, 2, 1800102.

    Article  Google Scholar 

  14. Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett.2013, 4, 2752–2757.

    Article  CAS  Google Scholar 

  15. Chhetri, M.; Dey, S.; Rao, C. N. R. Photoelectrochemical oxygen evolution reaction activity of amorphous Co–La double hydroxide-BiVO4 fabricated by pulse plating electrodeposition. ACS Energy Lett.2017, 2, 1062–1069.

    Article  CAS  Google Scholar 

  16. Zachäus, C.; Abdi, F. F.; Peter, L. M.; van de Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci.2017, 8, 3712–3719.

    Article  Google Scholar 

  17. Ding, C. M.; Shi, J. Y.; Wang, D. G.; Wang, Z. J.; Wang, N.; Liu, G. J.; Xiong, F. Q.; Li, C. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys. Chem. Chem. Phys.2013, 15, 4589–4595.

    Article  CAS  Google Scholar 

  18. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science2008, 321, 1072–1075.

    Article  CAS  Google Scholar 

  19. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem.2017, 1, 0003.

    Article  CAS  Google Scholar 

  20. Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci.2009, 2, 364–386.

    Article  CAS  Google Scholar 

  21. Sanchez Casalongue, H. G.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed.2014, 53, 7169–7172.

    Article  CAS  Google Scholar 

  22. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science2016, 352, 333–337.

    Article  CAS  Google Scholar 

  23. Liu, R.; Lin, Y. J.; Chou, L. Y.; Sheehan, S. W.; He, W. S.; Zhang, F.; Hou, H. J. M.; Wang, D. W. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew. Chem., Int. Ed.2011, 50, 499–502.

    Article  CAS  Google Scholar 

  24. Carroll, G. M.; Zhong, D. K.; Gamelin, D. R. Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe2O3 photoanodes. Energy Environ. Sci.2015, 8, 577–584.

    Article  CAS  Google Scholar 

  25. Steinmiller, E. M. P.; Choi, K. S. Photochemical deposition of cobaltbased oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA2009, 106, 20633–20636.

    Article  CAS  Google Scholar 

  26. Gao, B.; Wang, T.; Fan, X. L.; Gong, H.; Li, P.; Feng, Y. Y.; Huang, X. L.; He, J. P.; Ye, J. H. Enhanced water oxidation reaction kinetics on a BiVO4 photoanode by surface modification with Ni4O4 cubane. J. Mater. Chem. A2019, 7, 278–288.

    Article  CAS  Google Scholar 

  27. Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci.2011, 4, 5028–5034.

    Article  CAS  Google Scholar 

  28. Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4. J. Am. Chem. Soc.2011, 133, 18370–18377.

    Article  CAS  Google Scholar 

  29. Wei, Y. K.; Su, J. Z.; Wan, X. K.; Guo, L. J.; Vayssieres, L. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Res.2016, 9, 1561–1569.

    Article  CAS  Google Scholar 

  30. Wang, L.; Su, J. Z.; Guo, L. J. Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting. Nano Res.2019, 12, 575–580.

    Article  CAS  Google Scholar 

  31. Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting. Cryst. Growth Des.2010, 10, 856–861.

    Article  CAS  Google Scholar 

  32. Choi, S. K.; Choi, W.; Park, H. Solar water oxidation using nickelborate coupled BiVO4 photoelectrodes. Phys. Chem. Chem. Phys.2013, 15, 6499–6507.

    Article  CAS  Google Scholar 

  33. Joya, K. S.; Joya, Y. F.; De Groot, H. J. M. Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3/CO2 system at near-neutral pH. Adv. Energy Mater.2014, 4, 1301929.

    Article  Google Scholar 

  34. Zhang, H. Y.; Tian, W. J.; Li, Y. G.; Sun, H. Q.; Tadé, M. O.; Wang, S. B. A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. J. Mater. Chem. A2018, 6, 24149–24156.

    Article  CAS  Google Scholar 

  35. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem2011, 3, 1159–1165.

    Article  CAS  Google Scholar 

  36. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science2011, 334, 1383–1385.

    Article  CAS  Google Scholar 

  37. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater.2012, 11, 550–557.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (No. 51888103), the China National Key Research and Development Plan Project (No. 2018YFB1502000), and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JM-400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinzhan Su or Liejin Guo.

Electronic Supplementary Material

12274_2019_2605_MOESM1_ESM.pdf

Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, T., Su, J. et al. Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Res. 13, 231–237 (2020). https://doi.org/10.1007/s12274-019-2605-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2605-3

Keywords

Navigation