Skip to main content
Log in

Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal dichalcogenide semiconductors have emerged as promising candidates for optoelectronic devices with unprecedented properties and ultra-compact footprints. However, the high sensitivity of atomically thin materials to the surrounding dielectric media imposes severe limitations on their practical applicability. Hence, to enable the effective integration of these materials in devices, the development of reliable encapsulation procedures that preserve their physical properties is required. Here, the excitonic photoluminescence (at room temperature and 10 K) is assessed on mechanically exfoliated WSe2 monolayer flakes encapsulated with SiOx and AlxOy layers by means of chemical and physical deposition techniques. Conformal coating on untreated and non-functionalized flakes is successfully achieved by all the techniques examined, with the exception of atomic layer deposition, for which a cluster-like oxide coating is formed. No significant compositional or strain state changes in the flakes are detected upon encapsulation, independently of the technique adopted. Remarkably, our results show that the optical emission of the flakes is strongly influenced by the stoichiometry quality of the encapsulating oxide. When the encapsulation is carried out with slightly sub-stoichiometric oxides, two remarkable phenomena are observed. First, dominant trion (charged exciton) photoluminescence is detected at room temperature, revealing a clear electrical doping of the monolayers. Second, a strong decrease in the optical emission of the monolayers is observed, and attributed to non-radiative recombination processes and/or carrier transfer from the flake to the oxide. Power- and temperature-dependent photoluminescence measurements further confirm that stoichiometric oxides obtained by physical deposition lead to a successful encapsulation, opening a promising route for the development of integrated two-dimensional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing highperformance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

    Article  Google Scholar 

  2. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    Article  Google Scholar 

  3. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  4. Kobolov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer Series in Materials Science: Switzerland, 2016.

    Google Scholar 

  5. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  6. He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.

    Article  Google Scholar 

  7. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  Google Scholar 

  8. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    Article  Google Scholar 

  9. Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.

    Article  Google Scholar 

  10. You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477–482.

    Article  Google Scholar 

  11. Arora, A.; Koperski, M.; Nogajewski, K.; Marcus, J.; Faugeras, C.; Potemski, M. Excitonic resonances in thin films of WSe2: From monolayer to bulk material. Nanoscale 2015, 7, 10421–10429.

    Article  Google Scholar 

  12. Choi, J.; Zhang, H. Y.; Du, H. D.; Choi, J. H. Understanding solvent effects on the properties of two-dimensional transition metal dichalcogenides. ACS Appl. Mater. Interfaces 2016, 8, 8864–8869.

    Article  Google Scholar 

  13. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

    Article  Google Scholar 

  14. Yu, Y. F.; Yu, Y. L.; Xu, C.; Cai, Y. Q.; Su, L. Q.; Zhang, Y.; Zhang, Y. W.; Gundogdu, K.; Cao, L. Y. Engineering substrate interactions for high luminescence efficiency of transitionmetal dichalcogenide monolayers. Adv. Funct. Mater. 2016, 26, 4733–4739.

    Article  Google Scholar 

  15. Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

    Article  Google Scholar 

  16. Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.

    Article  Google Scholar 

  17. Mag-isa, A. E.; Kim, J. H.; Lee, H. J.; Oh, C. S. A systematic exfoliation technique for isolating large and pristine samples of 2D materials. 2D Mater. 2015, 2, 034017.

    Article  Google Scholar 

  18. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

    Article  Google Scholar 

  19. Yan, T. F.; Qiao, X. F.; Liu, X. N.; Tan, P. H.; Zhang, X. H. Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 2014, 105, 101901.

    Article  Google Scholar 

  20. Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai, Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

    Article  Google Scholar 

  21. Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

    Article  Google Scholar 

  22. Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.

    Article  Google Scholar 

  23. Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307–7313.

    Article  Google Scholar 

  24. Park, J. H.; Fathipour, S.; Kwak, I.; Sardashti, K.; Ahles, C. F.; Wolf, S. F.; Edmonds, M.; Vishwanath, S.; Xing, H. G.; Fullerton-Shirey, S. K. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 2016, 10, 6888–6896.

    Article  Google Scholar 

  25. Huber, M. A.; Mooshammer, F.; Plankl, M.; Viti, L.; Sandner, F.; Kastner, L. Z.; Frank, T.; Fabian, J.; Vitiello, M. S.; Cocker, T. L. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat Nanotechnol. 2016, 12, 207–211.

    Article  Google Scholar 

  26. Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838.

    Article  Google Scholar 

  27. Azcatl, A.; Kc, S.; Peng, X.; Lu, N.; McDonnell, S.; Qin, X. Y.; de Dios, F.; Addou, R.; Kim, J.; Kim, M. J. et al. HfO2 on UV–O3 exposed transition metal dichalcogenides: Interfacial reactions Study. 2D Mater. 2015, 2, 014004.

    Article  Google Scholar 

  28. Yang, W.; Sun, Q. Q.; Geng, Y.; Chen, L.; Zhou, P.; Ding, S. J.; Zhang, D. W. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci. Rep. 2015, 5, 11921.

    Article  Google Scholar 

  29. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  Google Scholar 

  30. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  31. Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

    Article  Google Scholar 

  32. Chen, K.; Kiriya, D.; Hettick, M.; Tosun, M.; Ha, T. J.; Madhvapathy, S. R.; Desai, S.; Sachid, A.; Javey, A. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. APL Mater. 2014, 2, 092504.

    Article  Google Scholar 

  33. Sercombe, D.; Schwarz, S.; Del Pozo-Zamudio, O.; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov, O.; Tartakovskii, A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.

    Article  Google Scholar 

  34. Plechinger, G.; Schrettenbrunner, F. X.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T. Low-temperature photoluminescence of oxide-covered single-layer MoS2. Phys. Status Solidi Rapid Res. Lett. 2012, 6, 126–128.

    Article  Google Scholar 

  35. Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 2014, 4, 5575.

    Article  Google Scholar 

  36. Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

    Article  Google Scholar 

  37. Eason, R. Pulsed Laser Deposition of Thin Films: Applications- Led Growth of Functional Materials; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2006.

    Book  Google Scholar 

  38. Toftmann, B.; Schou, J.; Hansen, T. N.; Lunney, J. G. Angular distribution of electron temperature and density in a laser-ablation plume. Phys. Rev. Lett. 2000, 84, 3998–4001.

    Article  Google Scholar 

  39. Serna, R.; Nuñez-Sanchez, S.; Xu, F.; Afonso, C. N. Enhanced photoluminescence of rare-earth doped films prepared by off-axis pulsed laser deposition. Appl. Surf. Sci. 2011, 257, 5204–5207.

    Article  Google Scholar 

  40. Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

    Article  Google Scholar 

  41. Stark, R. W.; Naujoks, N.; Stemmer, A. Multifrequency electrostatic force microscopy in the repulsive regime. Nanotechnology 2007, 18, 065502.

    Article  Google Scholar 

  42. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  Google Scholar 

  43. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

    Article  Google Scholar 

  44. Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.

    Article  Google Scholar 

  45. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

    Article  Google Scholar 

  46. Barnes, J. P.; Beer, N.; Petford-Long, A. K.; Suárez-García, A.; Serna, R.; Hole, D.; Weyland, M.; Midgley, P. A. resputtering and morphological changes of Au nanoparticles in nanocomposites as a function of the deposition conditions of the oxide capping layer. Nanotechnology 2005, 16, 718–723.

    Article  Google Scholar 

  47. Barnes, J. P.; Petford-Long, A. K.; Suárez-García, A.; Serna, R. Evidence for shallow implantation during the growth of bismuth nanocrystals by pulsed laser deposition. J. Appl. Phys. 2003, 93, 6396–6398.

    Article  Google Scholar 

  48. Klein, A.; Tomm, Y.; Schlaf, R.; Pettenkofer, C.; Jaegermann, W.; Lux-Steiner, M.; Bucher, E. Photovoltaic properties of WSe2 single-crystals studied by photoelectron spectroscopy. Sol. Energy Mater. Sol. Cells 1998, 51, 181–191.

    Article  Google Scholar 

  49. Stier, A. V; Wilson, N. P.; Clark, G.; Xu, X. D.; Crooker, S. A. Probing the Influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fields. Nano Lett. 2016, 16, 7054–7060.

    Article  Google Scholar 

  50. Griscom, D. L. Defect structure of glasses: Some outstanding questions in regard to vitreous silica. J. Non. Cryst. Solids 1985, 73, 51–77.

    Article  Google Scholar 

  51. Liu, D.; Clark, S. J.; Robertson, J. Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 2010, 96, 032905.

    Article  Google Scholar 

  52. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Article  Google Scholar 

  53. Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schü ller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi Rapid Res. Lett. 2015, 9, 457–461.

    Article  Google Scholar 

  54. Zhang, D. K.; Kidd, D. W.; Varga, K. Excited biexcitons in transition metal dichalcogenides. Nano Lett. 2015, 15, 7002–7005.

    Article  Google Scholar 

  55. Choi, J.; Zhang, H. Y.; Choi, J. H. Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 2016, 10, 1671–1680.

    Article  Google Scholar 

  56. Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.

    Article  Google Scholar 

  57. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G., Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

    Article  Google Scholar 

  58. Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

    Article  Google Scholar 

  59. Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403.

    Article  Google Scholar 

  60. Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 2016, 16, 2720–2727.

    Article  Google Scholar 

  61. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    Article  Google Scholar 

  62. Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.

    Article  Google Scholar 

  63. Kylänpää, I.; Komsa, H. P. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B 2015, 92, 205418.

    Article  Google Scholar 

  64. Mayers, M. Z.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo. Phys. Rev. BCondens. Matter Mater. Phys. 2015, 92, 161404.

    Article  Google Scholar 

  65. Hichri, A.; Amara, I. B.; Ayari, S.; Jaziri, S. Exciton, trion and localized exciton in monolayer tungsten disulfide. arXiv: 1609. 05634v1, 2016.

    Google Scholar 

  66. Wang, G.; Bouet, L.; Lagarde, D.; Vidal, M.; Balocchi, A.; Amand, T.; Marie, X.; Urbaszek, B. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 2014, 90, 075413.

    Article  Google Scholar 

  67. Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989–8994.

    Article  Google Scholar 

  68. Chiari, A.; Colocci, M.; Fermi, F.; Li, Y. H.; Querzoli, R.; Vinattieri, A.; Zhuang, W. H. Temperature dependence of the photoluminescence in GaAs-GaAlAs multiple quantum well structure. Phys. Status Solidi B 1988, 147, 421–429.

    Article  Google Scholar 

  69. Martín-Sánchez, J.; Trotta, R.; Piredda, G.; Schimpf, C.; Trevisi, G.; Seravalli, L.; Frigeri, P.; Stroj, S.; Lettner, T.; Reindl, M. et al. Reversible control of in-plane elastic stress tensor in nanomembranes. Adv. Opt. Mater. 2016, 4, 682–687.

    Article  Google Scholar 

  70. Trotta, R.; Martín-Sánchez, J.; Wildmann, J. S.; Piredda, G.; Reindl, M.; Schimpf, C.; Zallo, E.; Stroj, S.; Edlinger, J.; Rastelli, A. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 2016, 7, 10375.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Georgios Katsaros and Tim Wehling for valuable discussions. Stephan Bräuer, Albin Schwarz, and Ursula Kainz are acknowledged for technical support. A. M. acknowledges the financial support through BES-2013-062593. G. G. acknowledges support from the Austrian Science Fund through project P 28018-B27. I. Z. acknowledges financial support from the Swiss National Science Foundation research grant (No. 200021_165784). This work was partially funded by the Austrian Science Fund through the projects P24471 and P26830, and by the Spanish Ministry for Economy and Competitiveness trough the project MINECO/FEDER TEC2015-69916-C2-1-R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier Martín-Sánchez or Rinaldo Trotta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Sánchez, J., Mariscal, A., De Luca, M. et al. Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers. Nano Res. 11, 1399–1414 (2018). https://doi.org/10.1007/s12274-017-1755-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1755-4

Keywords

Navigation