Skip to main content
Log in

Characterization of Few layer Tungsten diselenide based FET under Thermal Excitation

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials are very promising with respect to their integration into optoelectronic devices. Monolayer tungsten diselenide (WSe2) is a direct-gap semiconductor with a bandgap of ~1.6eV, and is therefore a complement to other two-dimensional materials such as graphene, a gapless semimetal, and boron nitride, an insulator. The direct bandgap distinguishes monolayer WSe2 from its bulk and bilayer counterparts, which are both indirect gap materials with smaller bandgaps. This sizable direct bandgap in a two-dimensional layered material enables a host of new optical and electronic devices. In this work, a comprehensive analysis of the effect of optical excitation on the transport properties in few-layer WSe2 is studied. Monolayer WSe2 flakes from natural WSe2 crystals were transferred onto Si/SiO2 (270nm) substrates by mechanical exfoliation. The flakes were observed under an optical microscope. A FET based on mechanically exfoliated WSe2 was fabricated using photolithography with Molybdenum as metal contact and Silicon as back gate and the electronic properties were measured in a wide range of temperatures. The mobility of our device was found to be 0.2 cm2/V-S at room temperature. The schottky barrier height was found to decrease from 80 meV to 25 meV as the gate voltage increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim, K. S. Novoselov, Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. X. Huang, X. Y. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666–686 (2012).

    Article  CAS  Google Scholar 

  3. X. Huang, Small, 14, 1876–902 (2014).

    Google Scholar 

  4. F. Schwierz, Nat. Nanotechnol. 5, 487–496, (2010).

    Article  CAS  Google Scholar 

  5. N. O. Weiss, Adv. Mater. 24, 5782–5825 (2012).

    Article  CAS  Google Scholar 

  6. K. Kaasbjerg, K. S. Thygesen, K. W. Jacobsen, Physical Review B, 85, 115317 (2012).

    Article  Google Scholar 

  7. S. Kim, Nat. Commun.3, 1011 (2012).

    Article  Google Scholar 

  8. B. Chamlagain, Q. Li, ACS Nano, 8 5079–5088, (2014).

    Article  CAS  Google Scholar 

  9. K. F. Mak, Lee, C. J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett., 105, 136805 (2010).

    Article  Google Scholar 

  10. A. Splendiani, Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  11. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  12. H. Terrones, F. Lopez-Urias, M. Terrones, Sci. Rep, 3, 1549 (2013).

    Article  Google Scholar 

  13. A. Kumar, P. K. Ahluwalia, Eur. Phys. J. B, 85, 6 (2012).

    Article  Google Scholar 

  14. S. J. Najmaei, Nat. Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  15. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  16. W. J. Yu, Nat. Nanotechnol. 8, 952–958 (2013).

    Article  CAS  Google Scholar 

  17. W. J. Yu, Nat. Mater. 12, 246–252 (2013).

    Article  CAS  Google Scholar 

  18. C. F. Zhu, Z. Y. Zeng, H. Li, F. Li, C. H. Fan, H. J. Zhang, Am. Chem. Soc. 135, 5998–6001 (2013).

    Article  CAS  Google Scholar 

  19. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Lett. 12, 3788–3792 (2012).

    Article  CAS  Google Scholar 

  20. A. Castellanos-Gomez, 2D Mater, 1, 11002 (2013).

    Article  Google Scholar 

  21. S. Kim, Nat. Commun., 3, 1011 (2012).

    Article  Google Scholar 

  22. J. H. Chen, Nat. Phys. 4, 377–381 (2008).

    Article  CAS  Google Scholar 

  23. J. S Ross, Nat. Nanotechnol. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  24. S. Das Sarma, E. H. Hwang, Phys. Rev. B, 89, 235423 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Kaul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, A.S., Saenz, G.A. & Kaul, A. Characterization of Few layer Tungsten diselenide based FET under Thermal Excitation. MRS Advances 2, 3721–3726 (2017). https://doi.org/10.1557/adv.2017.490

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.490

Navigation