Skip to main content
Log in

Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The metabolic flux in microbial fuel cells (MFCs) is significantly different from conventional fermentation because the electrode in MFCs acts as a terminal electron acceptor. In this study, the difference in the carbon metabolism of Klebsiella pnuemoniae L17 (Kp L17) during growth in MFCs and conventional bioreactors was studied using glucose as the sole carbon and energy source. For metabolic flux analysis (MFA), the in silico metabolic flux model of Kp L17 was also constructed. The MFC bioreactor operated in oxidative mode, where electrons are removed by the anode electrode, generated a smaller quantity of reductive metabolites (e.g., lactate, 2,3-butanediol and ethanol) compared to the conventional fermentative bioreactor (non-MFC). Stoichiometric analysis indicated that the cellular metabolism in MFC had partially (or significantly) shifted to anaerobic respiration from fermentation, the former of which was similar to that often observed under micro-aerobic conditions. Electron balance analysis suggested that 30% of the electrons generated from glucose oxidation were extracted from the microbe and transferred to the electrode. These results highlight the potential use of MFCs in regulating the carbon metabolic flux in a bioprocess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lovley, D. R. and K. P. Nevin (2011) A shift in the current: New applications and concepts for microbe-electrode electron exchange. Curr. Opin. Biotechnol. 22: 441–448.

    Article  CAS  Google Scholar 

  2. Lovley, D. R. (2011) Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep. 3: 27–35.

    Article  CAS  Google Scholar 

  3. Gonzalez, P. J., C. Correia, I. Moura, C. D. Brondino and J. J. Moura (2006) Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. J. Inorg. Biochem. 100: 1015–1023.

    Article  CAS  Google Scholar 

  4. Ashok, S., S. Mohan Raj, Y. Ko, M. Sankaranarayanan, S. Zhou, V. Kumar, and S. Park (2013) Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ?glpK?dhaT. Metab. Eng. 15: 10–24.

    Article  CAS  Google Scholar 

  5. Pinchuk, G. E., O. V. Geydebrekht, E. A. Hill, J. L. Reed, A. E. Konopka, A. S. Beliaev, and J. K. Fredrickson (2011) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl. Environ. Microbiol. 77: 8234–8240.

    Article  CAS  Google Scholar 

  6. Mordkovich, N., T. Voeikova, L. Novikova, I. Smirnov, V. Il’in, P. Soldatov, A. Y. Tyurin-Kuz’min, T. Smolenskaya, V. Veiko, and R. Shakulov (2013) Effect of NAD+-dependent formate dehydrogenase on anaerobic respiration of Shewanella oneidensis MR-1. Microbiol. 82: 404–409.

    Article  CAS  Google Scholar 

  7. Glass, C. and J. Silverstein (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 32: 831–839.

    Article  CAS  Google Scholar 

  8. Gerritse, J., O. Drzyzga, G. Kloetstra, M. Keijmel, L.P. Wiersum, R. Hutson, M. D. Collins, and J. C. Gottschal (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl. Environ. Microbiol. 65: 5212–5221.

    CAS  Google Scholar 

  9. Riondet, C., R. Cachon, Y. Wache, G. Alcaraz, and C. Divies (2000) Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 182: 620–626.

    Article  CAS  Google Scholar 

  10. Du, C., H. Yan, Y. Zhang, Y. Li, and Z. Cao (2006) Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 69: 554–563.

    Article  CAS  Google Scholar 

  11. Call, D. F. and B. E. Logan (2011) A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosens. Bioelectron. 26: 4526–4531.

    Article  CAS  Google Scholar 

  12. Liu, C. G., C. Xue, Y. H. Lin, and F. W. Bai (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol. Adv. 31: 257–265.

    Article  CAS  Google Scholar 

  13. Rosenbaum, M. A. and A. E. Franks (2014) Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl. Microbiol. Biotechnol. 98: 509–518.

    Article  CAS  Google Scholar 

  14. Varma, A. and B. O. Palsson (1994) Metabolic flux balancing: Basic concepts, scientific and practical use. Biotechnol. 12.

    Google Scholar 

  15. Jones, J. A., O. D. Toparlak, and M. A. Koffas (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr. Opin. Biotechnol. 33: 52–59.

    Article  CAS  Google Scholar 

  16. Lee, D. Y., H. Yun, S. Park, and S. Y. Lee (2003) MetaFluxNet: The management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformat. 19: 2144–2146.

    Article  CAS  Google Scholar 

  17. Tang, Y. J., H. G. Martin, P. S. Dehal, A. Deutschbauer, X. Llora, A. Meadows, A. Arkin, and J. D. Keasling (2009) Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Biotechnol. Bioeng. 102: 1161–1169.

    Article  CAS  Google Scholar 

  18. Chen, X.-C., H. Song, T. Fang, J.-M. Cao, H.-J. Ren, J.-X. Bai, J. Xiong, P.-K. Ouyang, and H.-J. Ying (2010) Enhanced cyclic adenosine monophosphate production by Arthrobacter A302 through rational redistribution of metabolic flux. Bioresour. Technol. 101: 3159–3163.

    Article  CAS  Google Scholar 

  19. Niu, K., X. Zhang, W. S. Tan, and M. L. Zhu (2011) Effect of culture conditions on producing and uptake hydrogen flux of biohydrogen fermentation by metabolic flux analysis method. Bioresour. Technol. 102: 7294–7300.

    Article  CAS  Google Scholar 

  20. Jung, M. Y., S. Mazumdar, S. H. Shin, K.S. Yang, J. Lee, and M. K. Oh (2014) Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl. Environ. Microbiol. 80: 6195–6203.

    Article  Google Scholar 

  21. Seol, E., S. K. Ainala, B. S. Sekar, and S. Park (2014) Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose. Int. J. Hydrogen Energy 39: 19323–19330.

    Article  CAS  Google Scholar 

  22. Heidelberg, J. F., I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, R. Seshadri, N. Ward, B. Methe, R. A. Clayton, T. Meyer, A. Tsapin, J. Scott, M. Beanan, L. Brinkac, S. Daugherty, R. T. DeBoy, R. J. Dodson, A. S. Durkin, D. H. Haft, J. F. Kolonay, R. Madupu, J. D. Peterson, L.A. Umayam, O. White, A. M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T. R. Utterback, L. A. McDonald, T. V. Feldblyum, H. O. Smith, J. C. Venter, K. H. Nealson and C. M. Fraser (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20: 1118–1123.

    Article  CAS  Google Scholar 

  23. Rodionov, D. A., C. Yang, X. Li, I. A. Rodionova, Y. Wang, A. Y. Obraztsova, O. P. Zagnitko, R. Overbeek, M. F. Romine, S. Reed, J. K. Fredrickson, K. H. Nealson, and A. L. Osterman (2010) Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genom. 11: 494.

    Article  Google Scholar 

  24. Mao, L. and W. S. Verwoerd (2013) Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation. J. Ind. Microbiol. Biotechnol. 40: 1161–1180.

    Article  CAS  Google Scholar 

  25. Tang, Y. J., A. L. Meadows, J. Kirby, and J. D. Keasling (2007) Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling. J. Bacteriol. 189: 894–901.

    Article  CAS  Google Scholar 

  26. Feng, X., Y. Xu, Y. Chen, and Y. J. Tang (2012) Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput. Biol. 8: e1002376.

    Article  CAS  Google Scholar 

  27. Finch, A. S., T. D. Mackie, C. J. Sund, and J. J. Sumner (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresour. Technol. 102: 312–315.

    Article  CAS  Google Scholar 

  28. Zhang, L., S. Zhou, L. Zhuang, W. Li, J. Zhang, N. Lu, and L. Deng (2008) Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem. Commun. 10: 1641–1643.

    Article  CAS  Google Scholar 

  29. Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548–1555.

    Article  CAS  Google Scholar 

  30. Lanthier, M., K. B. Gregory, and D. R. Lovley (2008) Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett. 278: 29–35.

    Article  CAS  Google Scholar 

  31. Zeng, A. P., K. Menzel, and W. D. Deckwer (1996) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steadystate conditions. Biotechnol. Bioeng. 52: 561–571.

    Article  CAS  Google Scholar 

  32. Arasu, M. V., V. Kumar, S. Ashok, H. Song, C. Rathnasingh, H. J. Lee, D. Seung, and S. Park (2011) Isolation and characterization of the new Klebsiella pneumoniae J2B strain showing improved growth characteristics with reduced lipopolysaccharide formation. Biotechnol. Bioproc. Eng. 16: 1134–1143.

    Article  CAS  Google Scholar 

  33. Kim, J. R., G. C. Premier, F. R. Hawkes, J. Rodriguez, R. M. Dinsdale, and A. J. Guwy (2010) Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour. Technol. 101: 1190–1198.

    Article  CAS  Google Scholar 

  34. Li, X., L. Liu, T. Liu, T. Yuan, W. Zhang, F. Li, S. Zhou, and Y. Li (2013) Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17. Chemosphere 92: 218–224.

    Article  CAS  Google Scholar 

  35. Kim, J. R., B. Min, and B. E. Logan (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68: 23–30.

    Article  CAS  Google Scholar 

  36. Schilling, C. H., J. S. Edwards, D. Letscher, and B. O. Palsson (2000) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71: 286–306.

    Article  CAS  Google Scholar 

  37. Lu, M., C. Park, S. Lee, B. Kim, M.-K. Oh, Y. Um, J. Kim, and J. Lee (2014) The regulation of 2, 3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Bioproc. Biosyst. Eng. 37: 343–353.

    Article  CAS  Google Scholar 

  38. Liu, T., X. Li, W. Zhang, M. Hu, and F. Li (2014) Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17. J. Colloid Interface Sci. 423: 25–32.

    Article  CAS  Google Scholar 

  39. Kim, J. R., S. H. Jung, J. M. Regan, and B. E. Logan (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 98: 2568–2577.

    Article  CAS  Google Scholar 

  40. Menzel, K., K. Ahrens, A. Zeng, and W. Deckwer (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol. Bioeng. 60: 617–626.

    Article  CAS  Google Scholar 

  41. Durgapal, M., V. Kumar, T. H. Yang, H. J. Lee, D. Seung, and S. Park (2014) Production of 1, 3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Bioresour. Technol. 159: 223–231.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Rae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Ainala, S.K., Oh, YK. et al. Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. Biotechnol Bioproc E 21, 250–260 (2016). https://doi.org/10.1007/s12257-015-0777-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0777-6

Keywords

Navigation