Skip to main content
Log in

Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation

  • Systems Biotechnology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW−1, respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180. doi:10.1038/nbt.1586

    Article  PubMed  CAS  Google Scholar 

  2. Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112(4):379–387. doi:10.1016/j.jbiosc.2011.06.008

    Article  PubMed  CAS  Google Scholar 

  3. Bhaya D (2004) Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53(3):745–754. doi:10.1111/j.1365-2958.2004.04160.x

    Article  PubMed  CAS  Google Scholar 

  4. Boesen T, Nielsen LP (2013) Molecular dissection of bacterial nanowires. MBio 4(3). doi:10.1128/mBio.00270-13

  5. Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, Fu W, Shen Y, Hao T, Palsson BO, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7. URL http://www.nature.com/msb/journal/v7/n1/suppinfo/msb201152_S1.html

  6. Cheetham NWH (2011) Introducing biological energetics: how energy and information control the living. World Oxford University Press, New York

  7. Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40(7):2426–2432. doi:10.1021/es051652w

    Article  PubMed  CAS  Google Scholar 

  8. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482. doi:10.1016/j.biotechadv.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  9. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by Cyanobacteria. Microb Cell Fact 4:36. doi:10.1186/1475-2859-4-36

    Article  PubMed  Google Scholar 

  10. Ekins S, Honeycutt JD, Metz JT (2010) Evolving molecules using multi-objective optimization: applying to ADME/Tox. Drug Discov Today 15(11–12):451–460. doi:10.1016/j.drudis.2010.04.003

    Article  PubMed  CAS  Google Scholar 

  11. Feng X, Xu Y, Chen Y, Tang YJ (2012) Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput Biol 8(2):e1002376. doi:10.1371/journal.pcbi.1002376

    Article  PubMed  CAS  Google Scholar 

  12. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103(30):11358–11363. doi:10.1073/pnas.0604517103

    Article  PubMed  CAS  Google Scholar 

  13. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii SÄ, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103(30):11358–11363. doi:10.1073/pnas.0604517103

    Article  PubMed  CAS  Google Scholar 

  14. Johnson CH, Stewart PL, Egli M (2011) The cyanobacterial circadian system: from biophysics to bioevolution. Annu Rev Biophys 40:143–167. doi:10.1146/annurev-biophys-042910-155317

    Article  PubMed  CAS  Google Scholar 

  15. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3(3):109–136. doi:10.1093/dnares/3.3.109

    Article  PubMed  CAS  Google Scholar 

  16. Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681. doi:10.1007/s00253-003-1412-6

    Article  PubMed  CAS  Google Scholar 

  17. Kim K-Y, Chae K-J, Choi M-J, Ajayi FF, Jang A, Kim C-W, Kim IS (2011) Enhanced coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes. Bioresour Technol 102(5):4144–4149. doi:10.1016/j.biortech.2010.12.036

    Article  PubMed  CAS  Google Scholar 

  18. Kim N, Choi Y, Jung S, Kim S (2000) Development of microbial fuel cells using proteus vulgaris. Bull Korean Chem Soc 21(1):44–48

    CAS  Google Scholar 

  19. Kruk J, Jemioła-Rzemińska M, Strzałka K (2003) Cytochrome c is reduced mainly by plastoquinol and not by superoxide in thylakoid membranes at low and medium light intensities: its specific interaction with thylakoid membrane lipids. Biochem J 375(1):215–220. doi:10.1042/bj20021820

    Article  PubMed  CAS  Google Scholar 

  20. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4(12):957–970. doi:10.1039/b506923h

    Article  PubMed  CAS  Google Scholar 

  21. Lawrence BA, Suarez C, DePina A, Click E, Kolodny NH, Allen MM (1998) Two internal pools of soluble polyphosphate in the cyanobacterium Synechocystis sp. strain PCC 6308: an in vivo 31P NMR spectroscopic study. Arch Microbiol 169(3):195–200. doi:10.1007/s002030050560

    Article  PubMed  CAS  Google Scholar 

  22. Loferer-Krossbacher M, Klima J, Psenner R (1998) Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol 64(2):688–694

    PubMed  CAS  Google Scholar 

  23. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381

    Article  PubMed  CAS  Google Scholar 

  24. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  PubMed  CAS  Google Scholar 

  25. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571. doi:10.1016/j.copbio.2008.10.005

    Article  PubMed  CAS  Google Scholar 

  26. Madiraju KS, Lyew D, Kok R, Raghavan V (2012) Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell. Bioresour Technol 110:214–218. doi:10.1016/j.biortech.2012.01.065

    Article  PubMed  CAS  Google Scholar 

  27. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276. doi:10.1016/j.ymben.2003.09.002

    Article  PubMed  CAS  Google Scholar 

  28. Mao L, Verwoerd W (2013) Selection of organisms for systems biology study of microbial electricity generation: a review. Int J Energy Environ Eng 4(1):17. doi:10.1186/2251-6832-4-17

    Article  Google Scholar 

  29. Mao L, Verwoerd WS Computational comparison of mediated MFC current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes (submitted)

  30. Mao L, Verwoerd WS (2013) Model-driven elucidation of the inherent capacity of Geobacter sulfurreducens for electricity generation. J Biol Eng 7(1):14. doi:10.1186/1754-1611-7-14

    Article  PubMed  CAS  Google Scholar 

  31. McCormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC, Howe CJ (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ Sci 4(11):4699–4709

    Article  CAS  Google Scholar 

  32. McKinlay JB, Zeikus JG (2004) Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl Environ Microbiol 70(6):3467–3474. doi:10.1128/AEM.70.6.3467-3474.2004

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura Y, Kaneko T, Hirosawa M, Miyajima N, Tabata S (1998) CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucleic Acids Res 26(1):63–67. doi:10.1093/nar/26.1.63

    Article  PubMed  CAS  Google Scholar 

  34. Navarro E, Montagud A, Fernández de Córdoba P, Urchueguía JF (2009) Metabolic flux analysis of the hydrogen production potential in Synechocystis sp. PCC6803. Int J Hydrogen Energy 34(21):8828–8838. doi:10.1016/j.ijhydene.2009.08.036

  35. Okamoto A, Nakamura R, Hashimoto K (2011) In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA–MtrCAB protein complexes. Electrochim Acta 56(16):5526–5531. doi:10.1016/j.electacta.2011.03.076

    Google Scholar 

  36. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. URL http://www.nature.com/nbt/journal/v28/n3/abs/nbt.1614.html#supplementary-information

    Google Scholar 

  37. Park DH, Kim SK, Shin IH, Jeong YJ (2000) Electricity production in biofuel cell using modified graphite electrode with Neutral Red. Biotechnol Lett 22(16):1301–1304. doi:10.1023/a:1005674107841

    Article  CAS  Google Scholar 

  38. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1297. doi:10.1128/aem.66.4.1292-1297.2000

    Article  PubMed  CAS  Google Scholar 

  39. Pereyra V, Saunders M, Castillo J (2013) Equispaced Pareto front construction for constrained bi-objective optimization. Math Comput Model 57(9–10):2122–2131. doi:10.1016/j.mcm.2010.12.044

    Google Scholar 

  40. Pinchuk GE, Hill EA, Geydebrekht OV, De Ingeniis J, Zhang X, Osterman A, Scott JH, Reed SB, Romine MF, Konopka AE, Beliaev AS, Fredrickson JK, Reed JL (2010) Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Comput Biol 6(6):e1000822. doi:10.1371/journal.pcbi.1000822

    Article  PubMed  Google Scholar 

  41. Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS ONE 5(5):e10821. doi:10.1371/journal.pone.0010821

    Article  PubMed  Google Scholar 

  42. Pisciotta JM, Zou Y, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91(2):377–385. doi:10.1007/s00253-011-3239-x

    Article  PubMed  CAS  Google Scholar 

  43. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298. doi:10.1016/j.tibtech.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  44. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101. doi:10.1038/nature03661

    Article  PubMed  CAS  Google Scholar 

  45. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348. doi:10.1128/AEM.01444-06

    Article  PubMed  CAS  Google Scholar 

  46. Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45. doi:10.1186/1752-0509-4-45

    Article  PubMed  Google Scholar 

  47. Rosenbaum M, Schröder U (2010) Photomicrobial solar and fuel cells. Electroanalysis 22(7–8):844–855. doi:10.1002/elan.200800005

    Article  CAS  Google Scholar 

  48. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307. doi:10.1038/nprot.2011.308

    Article  PubMed  CAS  Google Scholar 

  49. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629

    Article  PubMed  Google Scholar 

  50. Sharma V, Kundu PP (2010) Biocatalysts in microbial fuel cells. Enzyme Microb Technol 47(5):179–188. doi:10.1016/j.enzmictec.2010.07.001

    Article  CAS  Google Scholar 

  51. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21(6):1617–1626. doi:10.1021/bp050246d

    Article  PubMed  CAS  Google Scholar 

  52. Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87(4):455–468

    CAS  Google Scholar 

  53. Song H-S, Ramkrishna D, Pinchuk GE, Beliaev AS, Konopka AE, Fredrickson JK (2013) Dynamic modeling of aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy requirement for growth. Metab Eng 15(0):25–33. doi:10.1016/j.ymben.2012.08.004

  54. Steuer R, Knoop H, Machné R (2012) Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth. J Exp Bot 63(6):2259–2274. doi:10.1093/jxb/ers018

    Article  PubMed  CAS  Google Scholar 

  55. Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76(3):561–568. doi:10.1007/s00253-007-1038-1

    Article  PubMed  CAS  Google Scholar 

  56. Takahashi H, Uchimiya H, Hihara Y (2008) Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. J Exp Bot 59(11):3009–3018. doi:10.1093/jxb/ern157

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka K, Kashiwagi N, Ogawa T (1988) Effects of light on the electrical output of bioelectrochemical fuel-cells containing Anabaena variabilis M-2: mechanism of the post-illumination burst. J Chem Technol Biotechnol 42(3):235–240. doi:10.1002/jctb.280420307

    Article  CAS  Google Scholar 

  58. van Hoek M, Merks R (2012) Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Syst Biol 6(1):22

    Article  PubMed  Google Scholar 

  59. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12(10):994–998

    Article  CAS  Google Scholar 

  60. Vermaas WFJ (2001) Photosynthesis and respiration in cyanobacteria. In: eLS. Wiley, London. doi:10.1038/npg.els.0001670

  61. Verwoerd W (2011) A new computational method to split large biochemical networks into coherent subnets. BMC Syst Biol 5(1):25

    Article  PubMed  CAS  Google Scholar 

  62. Verwoerd W (2012) Interactive extraction of metabolic subnets—the Netsplitter software implementation. J Mol Eng Syst Biol 1(1):2–2

    Google Scholar 

  63. Virdis B, Freguia S, Rozendal RA, Rabaey K, Yuan Z, Keller J (2011) 4.18—microbial fuel cells. In: Editor-in-Chief: Peter W (ed) Treatise on water science. Elsevier, Oxford, pp 641–665. doi:10.1016/b978-0-444-53199-5.00098-1

  64. Wang K, Liu Y, Chen S (2011) Improved microbial electrocatalysis with neutral red immobilized electrode. J Power Sour 196(1):164–168. doi:10.1016/j.jpowsour.2010.06.056

    Google Scholar 

  65. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95(12):6578–6583

    Google Scholar 

  66. Wilkinson S (2000) “Gastrobots”—benefits and challenges of microbial fuel cells in foodpowered robot applications. Auton Robots 9(2):99–111. doi:10.1023/a:1008984516499

    Article  Google Scholar 

  67. Yagishita T, Horigome T, Tanaka K (1993) Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. J Chem Technol Biotechnol 56(4):393–399. doi:10.1002/jctb.280560411

    Article  CAS  Google Scholar 

  68. Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4(3):202–216. doi:10.1006/mben.2002.0226

    Article  PubMed  CAS  Google Scholar 

  69. Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem 47(12):1707–1714. doi:10.1016/j.procbio.2012.07.032

    Google Scholar 

  70. Yoshikawa K, Kojima Y, Nakajima T, Furusawa C, Hirasawa T, Shimizu H (2011) Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl Microbiol Biotechnol 92 (2):347–358. doi:10.1007/s00253-011-3559-x

  71. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40(17):5193–5199. doi:10.1021/es060332p

    Article  PubMed  CAS  Google Scholar 

  72. Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104(5):939–946. doi:10.1002/bit.22466

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Mao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, L., Verwoerd, W.S. Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation. J Ind Microbiol Biotechnol 40, 1161–1180 (2013). https://doi.org/10.1007/s10295-013-1308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1308-0

Keywords

Navigation