Skip to main content
Log in

Dielectric properties of \(\hbox {Ag/Ru}_{0.03}\)–PVA/n-Si structures

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

\(\hbox {Ag/Ru}_{0.03}{-}\hbox {PVA}\)/n-Si structures were successfully prepared and their morphological and electrical properties were investigated. The obtained electrical results suggested that the complex dielectric constant (\(\varepsilon ^{*}=\varepsilon ^{\prime }-{j\varepsilon ^{\prime \prime }}\)), complex electric modulus \(M^{*}=M^{\prime } + { jM}^{\prime \prime }\), loss tangent (tan \(\delta \)) and alternating current (ac) electrical conductivity (\(\sigma _{\mathrm{ac}})\) are all a strong function of the frequency (f) and applied voltage. The changes in these parameters are the results of the existence of the surface states (\(N_{\mathrm{ss}})\) or interface traps (\(D_{\mathrm{it}} = N_{\mathrm{ss}})\), interfacial polymer layer, surface and dipole polarizations and hopping mechanisms. The values of \(\varepsilon ^{\prime }\) and \(\varepsilon ^{\prime \prime }\) show a steep decline with increasing frequency and then reach a constant value at high frequency, whereas the increments of \(M^{\prime }\) and \(M^{\prime \prime }\) with frequency are exponential. The tan \(\delta \, vs\). log f plot has a strong peak behaviour, especially in the accumulation region. These experimental results suggested that the \(\hbox {Ru}_{0.03}{-}\hbox {PVA}\) interfacial layer could be used as a high dielectric material instead of conventional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tanrıkulu E E, Yıldız D E, Günen A and Altindal Ş 2015 Phys. Scrip. 90 095801

    Article  Google Scholar 

  2. Tecimer H, Tunç T and Altındal Ş 2018 J. Mater. Sci. Mater. Electron. 29 3790

    Article  CAS  Google Scholar 

  3. Bilkan Ç, Azizian-Kalandaragh Y, Altındal Ş and Shokrani-Havigh R 2016 Phys. B 500 154

    Article  CAS  Google Scholar 

  4. Sreenu K, Prasad C V and Reddy V R 2017 J. Electron. Mater. 46 5746

    Article  CAS  Google Scholar 

  5. Chelkowski A 1980 Dielectric physics (Amsterdam: Elsevier)

    Google Scholar 

  6. Dutta P, Biswas S and De S K 2002 Mater. Res. Bull. 37 193

    Article  CAS  Google Scholar 

  7. Hoque M M, Duta A, Kumar S and Sinha T P 2014 J. Mater. Sci. Technol. 30 311

    Article  CAS  Google Scholar 

  8. Badapanda T, Sarangi S, Parida S, Behera B, Ojha B and Anwar S 2015 J. Mater. Sci. Mater. Electron. 26 3069

    Article  CAS  Google Scholar 

  9. Afandiyeva İ M, Dökme I, Altındal Ş, Bülbül M M and Tataroğlu A 2008 Microelectron. Eng. 85 247

    Article  CAS  Google Scholar 

  10. Rhoderick E H and Williams R H 1988 Metal-semiconductor contacts (Oxford: Clarendon Press)

    Google Scholar 

  11. Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys. 4 1589

    Article  CAS  Google Scholar 

  12. Nicollian E H and Brews J R 1982 Metal oxide semiconductor (MOS) physics and technology (New York: John Willey & Sons)

    Google Scholar 

  13. Sze S 1981 Physics of semiconductor devices (New York: Wiley)

    Google Scholar 

  14. Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U et al 2015 Nature 523 576

    Article  CAS  Google Scholar 

  15. Panda M 2018 J. Adv. Dielectr. 8 1850028

    Article  Google Scholar 

  16. Panda M 2017 Appl. Phys. Lett. 111 082901

    Article  Google Scholar 

  17. Reddy C V S, Han X, Zhu Q Y, Mai L Q and Chen W 2006 Microelectron. Eng. 83 281

    Article  Google Scholar 

  18. Aaltonen T, Alén P, Ritala M and Leskelä M 2003 Chem. Vap. Depos. 9 45

    Article  CAS  Google Scholar 

  19. Choi E S, Hwang J S and Yoon S G 2000 J. Electrochem. Soc. 147 2340

    Article  CAS  Google Scholar 

  20. Yoon D S, Hong K and Roh J S 2001 J. Vac. Sci. Technol. A 19 1730

    Article  CAS  Google Scholar 

  21. Asar Y Ş, Asar T, Altındal Ş and Özçelik S 2015 Philos. Mag. 95 2885

    Article  Google Scholar 

  22. Badali Y, Nikravan A, Altindal Ş and Uslu I 2018 J. Electron. Mater. 47 3510

    Article  CAS  Google Scholar 

  23. Hench L L and West J L 1990 Principles of electronic ceramics (New York: Wiley)

    Google Scholar 

  24. Lindroos S, Kanniainen T, Leskelä M and Rauhal E 1995 Thin Solid Film 263 79

    Article  CAS  Google Scholar 

  25. Sutar B C, Pati B, Parida B N, Das P R and Choudhary R N P 2013 J. Mater. Sci Mater. Electron. 24 2043

    Article  CAS  Google Scholar 

  26. Abdullah O G, Hussen S A and Alani A 2011 Asian Trans. Sci. Technol. 1 1

    Google Scholar 

  27. Raja V, Sharma A K and Narasimha Rao V V R 2004 Mater. Lett. 58 3242

    Article  CAS  Google Scholar 

  28. Nicolau Y F and Menard J C 1988 J. Cryst. Growth 92 128

    Article  CAS  Google Scholar 

  29. Wang Y and Herron N 1991 J. Phys. Chem. 95 525

    Article  CAS  Google Scholar 

  30. Abdel-Wahab F A, Maksoud H M and Kotkata M F 2006 J. Phys. D: Appl. Phys. 39 190

    Article  CAS  Google Scholar 

  31. Güçlü Ç S, Özdemir A F, Kökce A and Altindal S 2016 Acta Phys. Pol. A 130 325

    Article  Google Scholar 

  32. Funke K 1993 Prog. Solid State Chem. 22 111

    Article  CAS  Google Scholar 

  33. Hcini S, Khadhraoui S, Triki A, Zemni S, Boudard M and Oumezzine M 2014 J. Supercond. Novel Magn. 27 195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Badalı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badalı, Y., Koçyığıt, S., Uslu, I. et al. Dielectric properties of \(\hbox {Ag/Ru}_{0.03}\)–PVA/n-Si structures. Bull Mater Sci 42, 225 (2019). https://doi.org/10.1007/s12034-019-1875-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1875-4

Keywords

Navigation