Skip to main content
Log in

Investigation of the frequency effect on electrical modulus and dielectric properties of Al/p-Si structure with %0.5 Bi:ZnO interfacial layer

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Capacitance and conductance measurements were made to evaluate the effects of voltage and frequency on the dielectric properties, ac electrical conductivity (σac), and electric-modulus of the Al/%0.5 Bi:ZnO/p-Si structures. The measurements were taken in a voltage range of (− 4 V)–(+ 4 V) and frequency range of 0.1–1 MHz, respectively. All parameters were discovered to have substantial relationships to voltage and frequency at accumulation and depletion regions due to relaxation mechanisms and interface traps positioned between %0.5 Bi:ZnO interlayer and p-Si with energies in the Si bandgap. The e′-V, M″-V, and Z′-V plots all demonstrate a peak, and because of electronic charges being reordering and restructuring at surfaces, traps, and dipole-polarization under the external electric field, the peak’s position and magnitude vary with frequency. The double logarithmic σac-w curve shows linear behaviour, its slope was found as 0.699, and this value of the Al/%0.5 Bi:ZnO/p-Si/Au structure has high ac conductivity or low resistivity. The observed high changes in the dielectric constant and dielectric loss (e′, e′′) were explained by Maxwell–Wagner type polarization as well as interface traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gullu HH, Yildiz DE (2021) Capacitance, conductance, and dielectric characteristics of Al/TiO2/Si diode. J Mater Sci: Mater Electron 32:13549

    CAS  Google Scholar 

  2. Ulusoy M, Altındal Ş, Azizian-Kalandaragh Y, Özçelik S, Mirzaei-Kalar Z (2022) The electrical characteristic of an MIS structure with biocompatible minerals doped (brushite+monetite: PVC) interface layer, microelectron. Eng 258:111768

    CAS  Google Scholar 

  3. Karadeniz S, Yıldız DE (2023) Frequency dependent dielectric spectroscopy of Au/n-Si structure with stannic oxide (SnO2) interfacial layer. J Mater Sci: Mater Electron 34:1416

    CAS  Google Scholar 

  4. Büyükbaş-Uluşan A, AltındalYerişkin S, Tataroğlu A, Balbasi M, Azizian-Kalandaragh Y (2020) Dielectric, ac conductivity and electric modulus studies at MPS structure with (Cu2O-CuO)-doped PVA interfacial layer, optoelectron. Adv Mater Rapid Commun 14:256

    Google Scholar 

  5. Sevgili Ö, Taşçoığlu İ, Boughdachi S, Azizian-Kalandaragh Y, Altındal Ş (2019) Examination of dielectric response of Au/HgS-PVA/n-Si (MPS)structure by impedance spectroscopy method. Phys B Condens Matter 566:125

    Article  CAS  Google Scholar 

  6. Bengi S, Yükseltürk E, Bülbül MM (2023) Investigation of electrical characterization of Al/HfO2/p-Si structures in wide temperature range. J Mater Sci: Mater Electron 34:189

    CAS  Google Scholar 

  7. Yu JH, Chestakov DA, Eggink HJ (2013) In-situ analysis of thermal properties of polymer composites by embedded LED temperature sensor. Microelectron J 44:1025–1028

    Article  CAS  Google Scholar 

  8. Depas M, Van Meirhaeghe RL, Laflere WH, Cardon F (1992) A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p-Si tunnel diodes. Semicond Sci Technol 7:1476–1483

    Article  CAS  Google Scholar 

  9. Prasad CV, Reddy MSP, Reddy VR, Park C (2017) Effect of annealing on chemical, structural and electrical properties of Au/Gd2O3/n-GaN heterostructure with a high-k rare-earth oxide interlayer. Appl Surf Sci 427:670–677

    Article  Google Scholar 

  10. Szatkowski J, Sierański K (1992) Simple interface-layer model for the nonideal characteristics of the Schottky-barrier diode. Solid-State Electron 35:1013–1015

    Article  CAS  Google Scholar 

  11. Nicollian EH, Goetzberger A (1965) MOS conductance technique for measuring surface state parameters. Appl Phys Lett 7:216–219

    Article  CAS  Google Scholar 

  12. ErbilenTanrıkulu E, Taşçıoğlu İ (2023) Variation of the surface states and series resistance depending on voltage, and their effects on the electrical features of a schottky structure with CdZnO interface. J Electr Mater 52:2432–2440

    Article  Google Scholar 

  13. Ocaya RO, Erol I, Al-Sehemi AG, Dere A, Al-Ghamdi AA, Yakuphanoglu F (2022) ZnO-doped PFPAMA: a novel transparent conducting polymer for fast photodiodes. J Mater Sci: Mater Electron. 33:24803–24818

    CAS  Google Scholar 

  14. OrkunTan S, Tasçıoglu I, Altındal Ş (2021) Frequency response of metal-semiconductor structures with thin-films sapphire interlayer by ALD technique. IEEE Trans Electron Devices 68:10

    Google Scholar 

  15. Paratap Reddy MS, Lee JH, Jang JS (2013) Frequency-dependent series resistance and interface states in Au/bio-organic/n-GaN Schottky structures based on DNA biopolymer. Synth Met 185:167–171

    Article  Google Scholar 

  16. Cetinkaya HG, FeizollahiVahid A, Basman N, Demirezen S, ŞafakAsar Y, Altındal S (2023) On the wide range frequency and voltage dependence of electrical features and density of surface states of the Al/(Cu:DLC)/p-Si/Au Schottky diodes (SDs). J Mater Sci: Mater Electr. 34:822

    CAS  Google Scholar 

  17. Ulusoy M, Badali Y, Pirgholi-Givi G, Azizian-Kalandaragh Y, Altındal Ş (2023) The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface. Synth Met 292:117243

    Article  CAS  Google Scholar 

  18. Ersoz G, Yucedag I, Azizian-Kalandaragh Y, Orak I (2016) S¸Altındal, Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE Trans Electron Devices 63:2948–2955

    Article  CAS  Google Scholar 

  19. Faraz SM, Khan HR, Shah W, UlWahab Q, Nur O et al (2021) Effect of annealing temperature on the interface state density of n-ZnO nanorod/p-Si heterojunction diodes. Open Phys 19:467–476

    Article  CAS  Google Scholar 

  20. Ocak YS (2012) Electrical characterization of DC sputtered ZnO/p-Si heterojunction. J Alloy Compd 513:130–134

    Article  CAS  Google Scholar 

  21. Çetinkaya HG (2018) Frequency and voltage dependent profile of dielectric parameters and electric modulus for Al/(HgS-PVA)/p-Si Capacitor via impedance spectroscopy method. J Nanoelectron Optoelectron 13:421–427

    Article  Google Scholar 

  22. Faraz SM, Shah W, Alvi NUH, Nur O, Wahab QU (2020) Electrical characterization of Si/ZnO nanorod PN heterojunction diode. Adv Condens Matter Phys 1:1–9

    Article  Google Scholar 

  23. Faten E, Al-Hazmi F (2018) Yakuphanoglu, Photoconducting and photovoltaic properties of ZnO:TiO2 composite/p-silicon heterojunction photodiode. SILICON 10:781–787

    Article  Google Scholar 

  24. AksuCanbay C, Tataroğlu A, Dere A, Al-Sehemi AG, Karabulut A, Al-Ghamdih AA, Yakuphanoglu F (2021) Electrical, kinetic and photoelectrical properties of CuAlMnMg shape memory alloy/n-Si Schottky diode. J Alloys Compd 888:161600

    Article  Google Scholar 

  25. Raship NA, Tawil SNM, Nayan N, Ismail K (2023) Effect of Al concentration on structural, optical and electrical properties of (Gd, Al) Co-Doped ZnO and its n-ZnO/p-Si (100) heterojunction structures prepared via co-sputtering method. Materials. 16:2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ulusoy M, Altındal S, Durmus P, Ozcelik S, Azizian-Kalandaragh Y (2021) Frequency and voltage-dependent electrical parameters, interface traps, and series resistance profile of Au/(NiS:PVP)/n-Si structures. J Mater Sci: Mater Electron 32:13693–13707

    CAS  Google Scholar 

  27. Yang D, Jonnalagadda R, Rogers BR, Hillman JT, Foster RF, Cale TS (1998) Texture and surface roughness of PRCVD aluminum films. Thin Solid Films 332

  28. Kang DJ, Kim JS, Jeong SW, Roh Y, Jeong SH, Boo JH (2005) Structural and electrical characteristics of R.F. magnetron sputtered ZnO films. Thin Solid Films 475:160–165

    Article  CAS  Google Scholar 

  29. Bülbül MM, Bengi S, Dökme İ, Altındal Ş, Tunç T (2010) Temperature dependent capacitance and conductance-voltage characteristics of Au/polyvinyl alcohol(Co, Zn)/n-Si Schottky diodes. J Appl Phys 108:034517

    Article  Google Scholar 

  30. Kartci A, Vancik S, Prasek J, Hrdy R, Schneider M, Schmid U, Hubalek J (2022) Comparison of on-chip MIS capacitors based on stacked HfO2/Al2O3 nanolaminates. Appl Mater Today 33:104664

    CAS  Google Scholar 

  31. Baltakesmez A, Güzeldir B, Sağlam M, Biber M (2021) Interpretation of the I-V, C–V and G/ω-V characteristics of the Au/ZnS/n-GaAs/In structure depending on annealing temperature. Physica B 611:412801

    Article  CAS  Google Scholar 

  32. Gumus I, Aydogan S (2021) The electrical and dielectric properties of the magnetite nanoparticles supported graphene-oxide/n-Si MOS type device that operates across a wide temperature range. Sensors Actuators A 331:112989

    Article  CAS  Google Scholar 

  33. Yıldız DE, Tataroglu A (2023) Analysis of dielectric, impedance and electrical properties of interfacial layer: AlN. J Mater Sci: Mater Electron 34:1057

    Google Scholar 

  34. Cova P, Singh A, Masut RA (1997) A self-consistent technique for the analysis of the temperature dependence of current–voltage and capacitance–voltage characteristics of a tunnel metal-insulator-semiconductor structure. J Appl Phys 82:5217

    Article  CAS  Google Scholar 

  35. Güçlü ÇŞ, Özdemir AF, Aldemir DA, Altındal Ş (2021) The reverse bias current–voltage–temperature (I–V–T) characteristics of the (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs) in temperature range of 80–380 K. J Mater Sci: Mater Electron 32:5624–5634

    Google Scholar 

  36. Chattopadhyay P, Raychaudhuri B (1993) Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid State Electron 35:605

    Article  Google Scholar 

  37. Demirci A, Çetinkaya HG, Durmuş P, Demirezen S, Altındal Ş (2023) Optoelectronic characterization of Bi-doped ZnO nanocomposites for Schottky interlayer applications. Physica B 670:415338

    Article  CAS  Google Scholar 

  38. Kaya A, Zeyrek S, San SE, Altindal Ş (2013) Electrical and dielectric properties of Al/p-Si and Al/perylene/p-Si type diodes in a wide frequency range. Chinese Phys. B 23:018506

  39. Demir GE, Yücedağ İ, Azizian-Kalandaragh Y, Altındal Ş (2018) J Electron Mater 47:6600

    Article  Google Scholar 

  40. Chelkowski A (1980) Dielectric physics. Elsevier, Amsterdam

    Google Scholar 

  41. Popescu M, Bunget I (1984) physics of solid dielectrics. Elsevier, Amsterdam

    Google Scholar 

  42. Lapa HE, Kökce A, Özdemir AF, Uslu İ, Altindal Ş (2018) A comparative study on dielectric behaviours of Au/(Zn-doped PVA)/n-4H-SiC (MPS) structures with different interlayer thicknesses using impedance spectroscopy methods. Bullet Mater Sci 41:82

  43. Symth CP (1955) Dielectric behaviour and device. McGraw-Hill, New York

    Google Scholar 

  44. Vera Daniel V (1967) Dielectric relaxation (Academic Press, London)

  45. Taşçıoğlu İ, Sevgili Ö, Azizian-Kalandaragh Y, Altındal Ş (2020) Frequency-dependent admittance analysis of Au/n-Si structure with CoSO4-PVP interfacial layer. J Electron Mater 49:3720–3727

  46. Sevgili Ö, Taşçıoğlu İ, Boughdachid S, Azizian-Kalandaraghd Y, Altındal Ş (2019) Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Physica B 566:125

    Article  CAS  Google Scholar 

  47. Altındal Ş, Barkhordari A, Azizian-Kalandaragh Y, Çevrimli BS, Mashayekhi HR (2022) Dielectric properties and negative-capacitance/dielectric in Au/n-Si structures with PVC and (PVC: Sm2O3) interlayer. Mater Sci Semicond Process 147:106754

    Article  Google Scholar 

  48. Sevgili Ö, Azizian-Kalandaragh Y, Altındal Ş (2020) Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Physica B 587:412122

    Article  CAS  Google Scholar 

  49. Sevgili Ö (2021) The investigation of the complex dielectric and electric modulus of Al/MgSi/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range. Turk J Phys 45:159

    Article  CAS  Google Scholar 

  50. Azizian-Kalandaragh Y, Badali Y, Jamshidi-Ghozlu MA, Hanife F, Ozçelik S, Altındal S, Pirgholi-Givi G (2023) The temperature-dependent dielectric properties of the Au/ZnO-PVA/n-Si structure. Physica B 650:414495

    Article  CAS  Google Scholar 

  51. Demirezen S, Yerişkin SA (2021) Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. J Mater Sci Mater Electron 32:25339

    Article  CAS  Google Scholar 

  52. Akbaş AM, Tataroğlu A, Altındal Ş, Azizian-Kalandaragh Y (2021) Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures. J Mater Sci Mater Electron 32:7657

    Article  Google Scholar 

  53. Asar YŞ, Sevgili Ö, Altındal Ş (2023) Investigation of dielectric relaxation and ac conductivity in Au/(carbon nanosheet-PVP composite)/n-Si capacitors using impedance measurements. J Mater Sci: Mater Electron 34:893

    Google Scholar 

  54. Güneşer MT, Elamen H, Badali Y, Altíndal Ş (2023) Frequency dependent electrical and dielectric properties of the Au/(RuO2: PVC)/n-Si (MPS) structures. Physica B 657:414791

    Article  Google Scholar 

  55. Vahid FA, Alptekin S, Basman N, Ulusoy M, ŞafakAsar Y, Altındal Ş (2023) The investigation of frequency dependent dielectric properties and ac conductivity by impedance spectroscopy in the Al/(Cu-doped Diamond Like Carbon)/Au structures. J Mater Sci: Mater Electron 34:1118

    Google Scholar 

  56. Karadaş S, Yerişkin SA, Balbaşı M, Azizian-Kalandaragh Y (2021) Complex dielectric, complex electric modulus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. J Phys Chem Solids 148:109740

    Article  Google Scholar 

  57. Bilkan Ç, Azizian-Kalandaragh Y, Altındal Ş, Shokrani-Havigh R (2016) Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Physica B: Phys Condens Matter 500:154

    Article  CAS  Google Scholar 

  58. Karaoğlan N, Tecimer HU, Altındal Ş, Bindal C (2019) Dielectric characterization of BSA doped-PANI interlayered metal–semiconductor structures. J Mater Sci: Mater Electron 30:14224

    Google Scholar 

  59. Azizian-Kalandaragh Y, Yücedağ İ, ErsözDemir G, Altındal Ş (2021) Investigation of the variation of dielectric properties by applying frequency and voltage to Al/(CdS-PVA)/p-Si structures. J Mol Struct 1224:129325

  60. Yerişkin SA, Balbaşı M, Tataroğlu A (2016) Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J Appl Polym Sci 133:43827

    Article  Google Scholar 

  61. Ram R, Bhattacharya S (2023) Mixed ionic-electronic transport in Na2O doped glassy electrolytes: promising candidate for new generation sodium ion battery electrolytes. J Appl Phys 133:145101

    Article  CAS  Google Scholar 

  62. Halder P, Bhattacharya S (2023) Debye to non-debye type relaxation in MoO3 doped glassy semiconductors: a portrait on microstructure and electrical transport properties. Physica B 648:414374

    Article  CAS  Google Scholar 

  63. Das AS, Roy M, Roy D, Bhattacharya S, Nambissan PMG (2018) Identification of defects in the transition metal oxide-doped glass nanocomposite xV2O5–(1–x)(0.05MoO3–0.95ZnO) using positron annihilation spectroscopy and other techniques. J Non-Crystalline Solids 482:52–62

    Article  CAS  Google Scholar 

  64. Bhattacharya S, Acharya A, Biswas D, Das AS, Singh LS (2018) Conductivity spectra of lithium ion conducting glassy ceramics. Physica B 546:10–14

    Article  CAS  Google Scholar 

  65. Das AS, Roy M, Biswas D, Kundu R, Acharya A, Roy D, Bhattacharya S (2018) Ac conductivity of transition metal oxide doped glassy nanocomposite systems: temperature and frequency dependency. Mater Res Express 5(9):095201

    Article  Google Scholar 

  66. Das AS, Roy M, Roy D, Bhattacharya S, Nambissan PMG (2018) Defects characterization and study of amorphous phase formation in xV2O5-(1–x) Nd2O3 binary glass nanocomposites using positron annihilation and correlated experimental techniques. J Alloy Compd 753:748–760

    Article  CAS  Google Scholar 

  67. Das AS, Roy M, Roy D, Kar T, Rath S, Bhattacharya S (2017) Investigations of microstructure and dc conductivity of V2O5-Nd2O3 glass nanocomposites. ChemistrySelect 2(34):11273–11280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Seda Bengi: writing—review and editing, writing—original draft, visualization, validation, supervision; H. G. Çetinkaya: writing—original draft, validation; Ş. Altındal: writing—review and editing, supervision; P. Durmuş: methodology.

Corresponding author

Correspondence to S. Bengi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengi, S., Çetinkaya, H.G., Altındal, Ş. et al. Investigation of the frequency effect on electrical modulus and dielectric properties of Al/p-Si structure with %0.5 Bi:ZnO interfacial layer. Ionics (2024). https://doi.org/10.1007/s11581-024-05527-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05527-z

Keywords

Navigation