Skip to main content
Log in

Constitutive Defense Strategy of Coffee Under Field Conditions: A Comparative Assessment of Resistant and Susceptible Cultivars to Rust

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Coffea arabica is the most economically important coffee species worldwide. However, its production is severely limited by diseases such as rust. The mechanisms underlying constitutive defense responses in coffee are still poorly understood, compared with induced defense mechanisms. We aimed to characterize constitutive defense responses of thirteen cultivars of C. arabica. Cultivars were classified under field conditions according to the level of resistance to rust: resistant (R), moderately resistant (MR), and susceptible (S). Based on this classification, the stability of eight reference genes (RGs) was evaluated. The most stable RGs were EF1α, APT1, and 24S. We also evaluated the expression of CaWRKY1, CaPAL1, CaCAD1, and CaPOX1, and activities of PAL, CAD, and POX, which are involved in lignin biosynthesis, and leaf content of total phenolic compounds and lignin. Gene expression and enzymatic activity were not correlated with defense metabolites in the R cultivar group but showed a negative correlation with phenolic compounds in MR cultivars. Cultivar S showed positive correlations of gene expression and enzyme activity with phenolic compounds. These results may assist coffee breeding programs regarding selection of genotypes and in optimization of rust resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. International Coffee Organization. (2020). Crop year production by country. Retrieved June 11, 2020, from http://www.ico.org/trade_statistics.asp?section=statistics

  2. Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., et al. (2015). The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security, 7(2), 303–321.

    Article  Google Scholar 

  3. Capucho, A. S., Zambolim, L., Lopes, U. N., & Milagres, N. S. (2013). Chemical control of coffee leaf rust in Coffea canephora cv. conilon. Australasian Plant Pathology, 42(6), 667–673.

    Article  CAS  Google Scholar 

  4. Talhinhas, P., Batista, D., Diniz, I., Vieira, A., Silva, D. N., Loureiro, A., et al. (2017). The coffee leaf rust pathogen Hemileia vastatrix: One and a half centuries around the tropics. Molecular Plant Pathology, 18(8), 1039–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Capucho, A. S., Zambolim, E. M., Freitas, R. L., Haddad, F., Caixeta, E. T., & Zambolim, L. (2012). Identification of race XXXIII of Hemileia vastatrix on Coffea arabica Catimor derivatives in Brazil. Australasian Plant Disease Notes, 7(1), 189–191.

    Article  Google Scholar 

  6. Zambolim, L. (2016). Current status and management of coffee leaf rust in Brazil. Tropical Plant Pathology, 41(1), 1–8.

    Article  Google Scholar 

  7. Alkimim, E. R., Caixeta, E. T., Sousa, T. V., Pereira, A. A., de Oliveira, A. C. B., Zambolim, L., & Sakiyama, N. S. (2017). Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Molecular Breeding, 37(1), 10.

    Article  Google Scholar 

  8. Cabral, P. G. C., Maciel-Zambolim, E., Oliveira, S. A. S., Caixeta, E. T., & Zambolim, L. (2016). Genetic diversity and structure of Hemileia vastatrix populations on Coffea spp. Plant Pathology, 65(2), 196–204.

    Article  CAS  Google Scholar 

  9. Reis, E. A. C., Freitas, T., Mendes, A. N. G., Rezende, T. T., & Carvalho, J. P. F. (2018). Characterization of coffee cultivars leaf rust-resistant subjected to framework pruning. Coffee Science, 13(1), 8.

    Article  Google Scholar 

  10. de Carvalho, A. M., Mendes, A. N. G., Rezende, F. V., Botelho, C. E., Carvalho, G. R., & Ferreira, A. D. (2016). Selection of coffee progenies of catucaí group. Coffee Science, 11(2), 244–254.

    Google Scholar 

  11. De Carvalho, A. M., De Abreu Cardoso, D., Carvalho, G. R., De Carvalho, V. L., Pereira, A. A., Ferreira, A. D., & Carneiro, L. F. (2017). Behavior of coffee cultivars under the incidence of diseases of rust and gray leaf spot in two cultivation environments. Coffee Science, 12(1), 100–107.

    Article  Google Scholar 

  12. Dias, R. A., Ribeiro, M. R., de Carvalho, A. M., Botelho, C. E., Mendes, A. N. G., Ferreira, A. D., & Fernandes, F. C. (2019). Selection of coffee progenies for resistance to leaf rust and favorable agronomic traits. Coffee Science, 14(2), 10.

    Article  Google Scholar 

  13. Kushalappa, A. C., & Gunnaiah, R. (2013). Metabolo-proteomics to discover plant biotic stress resistance genes. Trends in Plant Science, 18(9), 522–531.

    Article  CAS  PubMed  Google Scholar 

  14. Caicedo, B. L. C., Cortina Guerrero, H. A., Roux, J., & Wingfield, M. J. (2013). New coffee (Coffea arabica) genotypes derived from Coffea canephora exhibiting high levels of resistance to leaf rust and Ceratocystis canker. Tropical Plant Pathology, 38(6), 485–494.

    Article  Google Scholar 

  15. Herrera, J. C. P., Alvarado, A. G., Cortina, G. H. A., Combes, M. C., Romero, G. G., & Lashermes, P. (2009). Genetic analysis of partial resistance to coffee leaf rust (Hemileia vastatrix Berk & Br.) introgressed into the cultivated Coffea arabica L. from the diploid C. canephora species. Euphytica, 167(1), 57–67.

    Article  Google Scholar 

  16. Ramiro, D., Jalloul, A., Petitot, A. S., Grossi de Sá, M. F., Maluf, M. P., & Fernandez, D. (2010). Identification of coffee WRKY transcription factor genes and expression profiling in resistance responses to pathogens. Tree Genetics and Genomes, 6(5), 767–781.

    Article  Google Scholar 

  17. Kushalappa, A. C., Yogendra, K. N., & Karre, S. (2016). Plant innate immune response: Qualitative and quantitative resistance. Critical Reviews in Plant Sciences, 35(1), 38–55.

    Article  CAS  Google Scholar 

  18. Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and biological functions in plants. International Journal of Molecular Sciences, 19(2), 335.

    Article  PubMed Central  Google Scholar 

  19. Malinovsky, F. G., Fangel, J. U., & Willats, W. G. T. (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 1–12.

    Article  Google Scholar 

  20. Wang, H., Avci, U., Nakashima, J., Hahn, M. G., Chen, F., & Dixon, R. A. (2010). Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences of the United States of America, 107(51), 22338–22343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., & Zhang, J. (2017). WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 59(2), 86–101.

    Article  CAS  PubMed  Google Scholar 

  22. Miedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5, 1–13.

    Article  Google Scholar 

  23. Zhang, X., & Liu, C. J. (2015). Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant, 8(1), 17–27.

    Article  CAS  PubMed  Google Scholar 

  24. Weng, J. K., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. New Phytologist, 187(2), 273–285.

    Article  CAS  Google Scholar 

  25. Frei, M. (2013). Lignin: Characterization of a multifaceted crop component. The Scientific World Journal, 2013, 1–25.

    Article  Google Scholar 

  26. Azinheira, H. G., do Silva, M. C., Talhinhas, P., Medeira, C., Maia, I., Petitot, A. S., & Fernandez, D. (2010). Non-host resistance responses of Arabidopsis thaliana to the coffee leaf rust fungus (Hemileia vastatrix). Botany, 88(7), 621–629.

    Article  Google Scholar 

  27. Barka, G. D., Caixeta, E. T., de Almeida, R. F., Alvarenga, S. M., & Zambolim, L. (2017). Differential expression of molecular rust resistance components have distinctive profiles in Coffea arabica - Hemileia vastatrix interactions. European Journal of Plant Pathology, 149(3), 543–561.

    Article  CAS  Google Scholar 

  28. Diniz, I., Talhinhas, P., Azinheira, H. G., Várzea, V., Medeira, C., Maia, I., et al. (2012). Cellular and molecular analyses of coffee resistance to Hemileia vastatrix and nonhost resistance to Uromyces vignae in the resistance-donor genotype HDT832/2. European Journal of Plant Pathology, 133(1), 141–157.

    Article  CAS  Google Scholar 

  29. Guerra-Guimarães, L., Tenente, R., Pinheiro, C., Chaves, I., Silva, M. C., Cardoso, F. M. H., et al. (2015). Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix. Frontiers in Plant Science, 6, 1–16.

    Article  Google Scholar 

  30. Guzzo, S. D., Harakava, R., & Tsai, S. M. (2009). Identification of coffee genes expressed during systemic acquired resistance and incompatible interaction with Hemileia vastatrix. Journal of Phytopathology, 157(10), 625–638.

    Article  CAS  Google Scholar 

  31. Monteiro, A. C. A., de Resende, M. L. V., Valente, T. C. T., Ribeiro Junior, P. M., Pereira, V. F., da Costa, J. R., & da Silva, J. A. G. (2016). Manganese phosphite in coffee defence against Hemileia vastatrix, the coffee rust fungus: Biochemical and molecular analyses. Journal of Phytopathology, 164(11–12), 1043–1053.

    Article  CAS  Google Scholar 

  32. Petitot, A. S., Lecouls, A. C., & Fernandez, D. (2008). Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica. Tree Genetics and Genomes, 4(3), 379–390.

    Article  Google Scholar 

  33. Feussner, I., & Polle, A. (2015). What the transcriptome does not tell—proteomics and metabolomics are closer to the plants’ patho-phenotype. Current Opinion in Plant Biology, 26, 26–31.

    Article  CAS  PubMed  Google Scholar 

  34. Gururani, M. A., Venkatesh, J., Upadhyaya, C. P., Nookaraju, A., Pandey, S. K., & Park, S. W. (2012). Plant disease resistance genes: Current status and future directions. Physiological and Molecular Plant Pathology, 78, 51–65.

    Article  CAS  Google Scholar 

  35. Vieira, A., Talhinhas, P., Loureiro, A., Duplessis, S., Fernandez, D., Silva, M. C., et al. (2011). Validation of RT-qPCR reference genes for in planta expression studies in Hemileia vastatrix, the causal agent of coffee leaf rust. Fungal Biology, 115(9), 891–901.

    Article  CAS  PubMed  Google Scholar 

  36. Udvardi, M. K., Czechowski, T., & Scheible, W. R. (2008). Eleven golden rules of quantitative RT-PCR. The Plant Cell, 20(7), 1736–1737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozera, B., & Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Budzinski, I. G. F., Moon, D. H., Morosini, J. S., Lindén, P., Bragatto, J., Moritz, T., & Labate, C. A. (2016). Integrated analysis of gene expression from carbon metabolism, proteome and metabolome, reveals altered primary metabolism in Eucalyptus grandis bark, in response to seasonal variation. BMC Plant Biology, 16(1), 149.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dong, C., Wang, R., Zheng, X., Zheng, X., Jin, L., Wang, H., et al. (2018). Integration of transcriptome and proteome analyses reveal molecular mechanisms for formation of replant disease in Nelumbo nucifera. RSC Advances, 8(57), 32574–32587.

    Article  CAS  Google Scholar 

  40. Capucho, A. S., Zambolim, L., Duarte, H. S. S., & Vaz, G. R. O. (2011). Development and validation of a standard area diagram set to estimate severity of leaf rust in Coffea arabica and C. canephora. Plant Pathology, 60(6), 1144–1150.

    Article  Google Scholar 

  41. Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.

    Article  CAS  Google Scholar 

  42. De Carvalho, K., Bespalhok Filho, J. C., Dos Santos, T. B., De Souza, S. G. H., Vieira, L. G. E., Pereira, L. F. P., & Domingues, D. S. (2013). Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): Identification and validation of new genes for qPCR normalization. Molecular Biotechnology, 53(3), 315–325.

  43. Fernandes-Brum, C. N., Garcia, B. de O., Moreira, R. O., Ságio, S. A., Barreto, H. G., Lima, A. A., et al. (2017). A panel of the most suitable reference genes for RT-qPCR expression studies of coffee: screening their stability under different conditions. Tree Genetics and Genomes. https://doi.org/10.1007/s11295-017-1213-1

  44. Freitas, N. C., Barreto, H. G., Fernandes-Brum, C. N., Moreira, R. O., Chalfun-Junior, A., & Paiva, L. V. (2017). Validation of reference genes for qPCR analysis of Coffea arabica L. somatic embryogenesis-related tissues. Plant Cell, Tissue and Organ Culture, 128(3), 663–678.

  45. Martins, M. Q., Fortunato, A. S., Rodrigues, W. P., Partelli, F. L., Campostrini, E., Lidon, F. C., et al. (2017). Selection and validation of reference genes for accurate RT-qPCR data normalization in Coffea spp. under a climate changes context of interacting elevated [CO2] and temperature. Frontiers in Plant Science, 8, 307.

  46. Petitot, A. S., Barsalobres-Cavallari, C., Ramiro, D., Albuquerque Freire, E., Etienne, H., & Fernandez, D. (2013). Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee Coffea arabica. Plant Cell Reports, 32(8), 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  47. de Andrade, C. C. L. (2015). Cercospora coffeicola: ANÁLISES MOLECULARES , BIOQUÍMICAS E PROCESSO INFECCIOSO NA INTERAÇÃO COM CAFEEIRO. PhD Tesis, Universidade Federal de Lavras, MG, Brasil.

  48. Xie, F., Xiao, P., Chen, D., Xu, L., & Zhang, B. (2012). miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, 80(1), 75–84.

    Article  CAS  Google Scholar 

  49. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 12.

    Article  Google Scholar 

  50. Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509–515.

    Article  CAS  PubMed  Google Scholar 

  51. Silver, N., Best, S., Jiang, J., & Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Andersen, C. L., Jensen, J. L., & Falck Ørntoft, T. (2004). Normalization of real-time quantitative reverse transcription-PCR Data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  PubMed  Google Scholar 

  53. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 45–45.

    Article  Google Scholar 

  54. De Andrade, C. C. L., Vicentin, R. P., Costa, J. R., Perina, F. J., De Resende, M. L. V., & Alves, E. (2016). Alterações no metabolismo antioxidante de folhas de cafeeiro infectadas por Cercospora coffeicola. Ciencia Rural, 46(10), 1764–1770.

    Article  Google Scholar 

  55. Possa, K. F., Silva, J. A. G., Resende, M. L. V., Tenente, R., Pinheiro, C., Chaves, I., et al. (2020). Primary metabolism is distinctly modulated by plant resistance inducers in Coffea arabica leaves infected by Hemileia vastatrix. Frontiers in Plant Science, 11, 309.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Biemelt, S., Keetman, U., & Albrecht, G. (1998). Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiology, 116, 651–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zucker, M. (1965). Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology, 40, 779–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma, L., He, J., Liu, H., & Zhou, H. (2017). The phenylpropanoid pathway affects apple fruit resistance to Botrytis cinerea. Journal of Phytopathology, 166(3), 206–215.

    Article  Google Scholar 

  59. Urbanek, H., Kuzniak-Gebarowska, E., & Herka, K. (1991). Elicitation of defense responses in bean-leaves by Botrytis cinerea polygalacturonase. Acta Physiologiae Plantarum, 13, 43–50.

    CAS  Google Scholar 

  60. Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  61. Benitez, V., Rebollo-Hernanz, M., Hernanz, S., Chantres, S., Aguilera, Y., & Martin-Cabrejas, M. A. (2019). Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International, 122, 105–113.

    Article  CAS  PubMed  Google Scholar 

  62. Lima, R. B., Dos-Santos, T. B., Vieira, L. G. E., Ferrarese, M. D. L. L., Ferrarese-Filho, O., Donatti, L., et al. (2013). Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydrate Polymers, 93(1), 135–143.

    Article  CAS  PubMed  Google Scholar 

  63. Oliveira, F. C., Srinivas, K., Helms, G. L., Isern, N. G., Cort, J. R., Gonçalves, A. R., & Ahring, B. K. (2018). Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology, 257, 172–180.

    Article  CAS  Google Scholar 

  64. Spanos, G. A., & Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565–1571.

    Article  CAS  Google Scholar 

  65. Doster, M., & Bostock, R. (1988). Quantification of lignin formation in almond bark in response to wounding and infection by Phytophthora species. Phytopathology, 78, 473–477.

    Article  CAS  Google Scholar 

  66. Gutierrez, L., Mauriat, M., Guénin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., et al. (2008). The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6(6), 609–618.

    Article  CAS  PubMed  Google Scholar 

  67. Barsalobres-Cavallari, C. F., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, 10(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cruz, F., Kalaoun, S., Nobile, P., Colombo, C., Almeida, J., Barros, L. M. G., Alves-Ferreira, M., et al. (2009). Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Molecular Breeding, 23(4), 607–616.

    Article  CAS  Google Scholar 

  69. Figueiredo, A., Loureiro, A., Batista, D., Monteiro, F., Várzea, V., Pais, M. S., et al. (2013). Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae. BMC Research Notes, 6(1), 388.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Goulao, L. F., Fortunato, A. S., & Ramalho, J. C. (2012). Selection of reference genes for normalizing quantitative real-time PCR gene expression data with multiple variables in Coffea spp. Plant Molecular Biology Reporter, 30(3), 741–759.

    Article  CAS  Google Scholar 

  71. Joseph, J. T., Poolakkalody, N. J., & Shah, J. M. (2018). Plant reference genes for development and stress response studies. Journal of Biosciences, 43(1), 173–187.

    Article  CAS  PubMed  Google Scholar 

  72. Paez-Garcia, A., Sparks, J. A., de Bang, L., & Blancaflor, E. B. (2018). Plant actin cytoskeleton: New functions from old scaffold. In V. P. Sahi & F. Baluška (Eds.), Plant cell monographs (Vol. 23, pp. 103–137). Springer.

    Google Scholar 

  73. Pachauri, S., Chatterjee, S., Kumar, V., & Mukherjee, P. K. (2019). A dedicated glyceraldehyde-3-phosphate dehydrogenase is involved in the biosynthesis of volatile sesquiterpenes in Trichoderma virens—evidence for the role of a fungal GAPDH in secondary metabolism. Current Genetics, 65(1), 243–252.

    Article  CAS  PubMed  Google Scholar 

  74. Guo, L., Devaiah, S. P., Narasimhan, R., Pan, X., Zhang, Y., Zhang, W., & Wang, X. (2012). Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. The Plant Cell, 24(5), 2200–2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vescovi, M., Zaffagnini, M., Festa, M., Trost, P., Lo Schiavo, F., & Costa, A. (2013). Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiology, 162(1), 333–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Henry, E., Fung, N., Liu, J., Drakakaki, G., & Coaker, G. (2015). Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genetics, 11(4), e1005199.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zysnarski, C. J., Lahiri, S., Javed, F. T., Martínez-Márquez, J. Y., Trowbridge, J. W., & Duncan, M. C. (2019). Adaptor protein complex-1 (AP-1) is recruited by the HEATR5 protein Laa1 and its co-factor Laa2 in yeast. Journal of Biological Chemistry, 294(4), 1410–1419.

    Article  CAS  Google Scholar 

  78. Singh, R., Stoneham, C., Lim, C., Jia, X., Guenaga, J., Wyatt, R., et al. (2018). Phosphoserine acidic cluster motifs bind distinct basic regions on theμ subunits of clathrin adaptor protein complexes. Journal of Biological Chemistry, 293(40), 15678–15690.

    Article  CAS  Google Scholar 

  79. Chapman, J. R., & Waldenström, J. (2015). With reference to reference genes: A systematic review of endogenous controls in gene expression studies. PLoS ONE, 10(11), e0141853.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ganesh, D., Petitot, A. S., Silva, M. C., Alary, R., Lecouls, A. C., & Fernandez, D. (2006). Monitoring of the early molecular resistance responses of coffee (Coffea arabica L.) to the rust fungus (Hemileia vastatrix) using real-time quantitative RT-PCR. Plant Science, 170(6), 1045–1051.

    Article  CAS  Google Scholar 

  81. Fernandez, D., Santos, P., Agostini, C., Bon, M. C., Petitot, A. S., Silva, M. C., et al. (2004). Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix). Molecular Plant Pathology, 5(6), 527–536.

    Article  CAS  PubMed  Google Scholar 

  82. Ardila, H. D., Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245.

    Article  CAS  Google Scholar 

  83. Atanasova-Penichon, V., Pons, S., Pinson-Gadais, L., Picot, A., Marchegay, G., Bonnin-Verdal, M. N., et al. (2012). Chlorogenic acid and maize ear rot resistance: A dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Molecular Plant-Microbe Interactions, 25(12), 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  84. Ganapathy, G., Keerthi, D., Nair, R. A., & Pillai, P. (2016). Correlation of Phenylalanine ammonia lyase (PAL) and Tyrosine ammonia lyase (TAL) activities to phenolics and curcuminoid content in ginger and its wild congener, Zingiber zerumbet following Pythium myriotylum infection. European Journal of Plant Pathology, 145(4), 777–785.

    Article  CAS  Google Scholar 

  85. Ramiro, D. A., Guerreiro-Filho, O., & Mazzafera, P. (2006). Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. Journal of Chemical Ecology, 32(9), 1977–1988.

    Article  CAS  PubMed  Google Scholar 

  86. Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., et al. (2015). Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics, 11(1), 81–97.

    Article  CAS  Google Scholar 

  87. Cipollini, D., Wang, Q., Whitehill, J. G. A., Powell, J. R., Bonello, P., & Herms, D. A. (2011). Distinguishing Defensive Characteristics in the Phloem of Ash Species Resistant and Susceptible to Emerald Ash Borer. Journal of Chemical Ecology, 37(5), 450–459.

    Article  CAS  PubMed  Google Scholar 

  88. Schrotenboer, A. C., Allen, M. S., & Malmstrom, C. M. (2011). Modification of native grasses for biofuel production may increase virus susceptibility. GCB Bioenergy, 3(5), 360–374.

    Article  Google Scholar 

  89. Guillaumie, S., Mzid, R., Méchin, V., Léon, C., Hichri, I., Destrac-Irvine, A., et al. (2010). The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Molecular Biology, 72(1–2), 215–234.

    Article  CAS  PubMed  Google Scholar 

  90. Naoumkina, M. A., He, X., & Dixon, R. A. (2008). Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 8(1), 132.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schluttenhofer, C., & Yuan, L. (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 167(2), 295–306.

    Article  CAS  PubMed  Google Scholar 

  92. Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY transcription factors: Molecular regulation and stress responses in plants. Frontiers in Plant Science, 7, 1–14.

    Article  Google Scholar 

  93. Pandey, S. P., & Somssich, I. E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiology, 150(4), 1648–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao, Q. (2016). Lignification: Flexibility, Biosynthesis and Regulation. Trends in Plant Science, 21(8), 713–721.

    Article  CAS  PubMed  Google Scholar 

  95. Kong, J. Q. (2015). Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Advances, 5(77), 62587–62603.

    Article  CAS  Google Scholar 

  96. Fossdal, C. G., Nagy, N. E., Hietala, A. M., Kvaalen, H., Slimestad, R., Woodward, S., & Solheim, H. (2012). Indications of heightened constitutive or primed host response affecting the lignin pathway transcripts and phenolics in mature Norway spruce clones. Tree Physiology, 32(9), 1137–1147.

    Article  CAS  PubMed  Google Scholar 

  97. Thévenin, J., Pollet, B., Letarnec, B., Saulnier, L., Gissot, L., Maia-Grondard, A., et al. (2011). The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. Molecular Plant, 4(1), 70–82.

    Article  PubMed  Google Scholar 

  98. Voxeur, A., Wang, Y., & Sibout, R. (2015). Lignification: Different mechanisms for a versatile polymer. Current Opinion in Plant Biology, 23, 83–90.

    Article  CAS  PubMed  Google Scholar 

  99. Anterola, A. M., & Lewis, N. G. (2002). Trends in lignin modification: A comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry, 61, 221–294.

    Article  CAS  PubMed  Google Scholar 

  100. La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M., & Heitz, T. (2004). Metabolic reprogramming in plant innate immunity: The contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews, 198(1), 267–284.

    Article  PubMed  Google Scholar 

  101. Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., & Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112(1), 54–62.

    Article  CAS  PubMed  Google Scholar 

  102. Shigeto, J., & Tsutsumi, Y. (2016). Diverse functions and reactions of class III peroxidases. New Phytologist, 209(4), 1395–1402.

    Article  CAS  Google Scholar 

  103. Brown, J. K. M., & Rant, J. C. (2013). Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. Plant Pathology, 62(S1), 83–95.

    Article  Google Scholar 

  104. Ning, Y., Liu, W., & Wang, G. L. (2017). Balancing immunity and yield in crop plants. Trends in Plant Science, 22(12), 1069–1079.

    Article  CAS  PubMed  Google Scholar 

  105. Verne, S., Jaquish, B., White, R., Ritland, C., & Ritland, K. (2011). Global transcriptome analysis of constitutive resistance to the white pine weevil in spruce. Genome Biology and Evolution, 3(1), 851–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wittstock, U., & Gershenzon, J. (2002). Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology, 5(4), 300–307.

    Article  CAS  PubMed  Google Scholar 

  107. Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., & Dong, X. (2017). UORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature, 545(7655), 491–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Llorca, C. M., Potschin, M., & Zentgraf, U. (2014). bZIPs and WRKYs: Two large transcription factor families executing two different functional strategies. Frontiers in Plant Science, 5, 169.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defence mechanisms. New Phytologist, 127(4), 617–633.

    Article  CAS  Google Scholar 

  110. Mishra, M. K. (2020). Advances in plant breeding strategies: nut and beverage crops, vol. 4: Genetic Resources and breeding of coffee (Coffea spp.) (pp. 488–502). Springer.

Download references

Funding

This study was funded in part by the Coordination of Improvement of Higher Education Personnel – Brazil (CAPES) – Finance Code 001, the National Institute for Coffee Science and Technology (INCT-Café), and the Research Support Foundation of the State of Minas Gerais (Fapemig).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mário Lúcio Vilela de Resende, Tharyn Reichel, Ana Cristina Andrade Monteiro, Natália Chagas Freitas, and Deila Magna dos Santos Botelho. The first draft of the manuscript was written by Tharyn Reichel, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mário Lúcio Vilela de Resende.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichel, T., de Resende, M.L.V., Monteiro, A.C.A. et al. Constitutive Defense Strategy of Coffee Under Field Conditions: A Comparative Assessment of Resistant and Susceptible Cultivars to Rust. Mol Biotechnol 64, 263–277 (2022). https://doi.org/10.1007/s12033-021-00405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00405-9

Keywords

Navigation