Advertisement

Understanding m6A Function Through Uncovering the Diversity Roles of YTH Domain-Containing Proteins

  • Y. L. Zhao
  • Y. H. Liu
  • R. F. Wu
  • Z. Bi
  • Y. X. Yao
  • Q. Liu
  • Y. Z. Wang
  • X. X. WangEmail author
Review
  • 87 Downloads

Abstract

N6-methyladenosine (m6A) is the most abundant—internal modification of eukaryotic mRNA. m6A can be installed and removed by specific enzymes. The “writer,” “eraser,” and “reader” of m6A modification have been reported. These discoveries facilitate our understanding of the functional significance of m6A. m6A plays an essential role in diverse biological processes by recruiting the corresponding YTH domain-containing proteins, as well as recruiting additional translation initiation factors. Here, we provide an update on the various aspects of YTH domain-containing proteins, including an introduction to the YTH domain, the categories, distribution in cells, and biological roles of YTH proteins. Then we focus on the mechanisms that YTH proteins recognize m6A and mediate the fate of methylated-RNAs in eukaryotic cells.

Keywords

YTH domain m6A binding proteins m6RNA modifications Epigenetics 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31572413), the Natural Science Foundation of Zhejiang Province (No. LZ17C170001), the State Key Program of National Natural Science Foundation of China (No. 3163000269), and the Special Fund for Cultivation and Breeding of New Transgenic Organism (No. 2014ZX0800949B).

References

  1. 1.
    Fu, Y., Dominissini, D., Rechavi, G., & He, C. (2014). Gene expression regulation mediated through reversible m6A RNA methylation. Nature Reviews Genetics, 15, 293–306.CrossRefPubMedGoogle Scholar
  2. 2.
    Wu, R., Jiang, D., Wang, Y., & Wang, X. (2016). N6-methyladenosine m6A methylation in mRNA with a dynamic and reversible epigenetic modification. Molecular Biotechnology, 58, 450–459.CrossRefPubMedGoogle Scholar
  3. 3.
    Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma messenger-RNA. Nature, 255, 28–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Wei, C. M., & Moss, B. (1977). Nucleotide-sequences at N6-methyladenosine sites of HeLa-cell messenger ribonucleic-acid. Biochemistry-US, 16, 1672–1676.CrossRefGoogle Scholar
  5. 5.
    Krug, R. M., Morgan, M. A., & Shatkin, A. J. (1976). Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. Journal of Virology, 20, 45–53.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Jia, G. F., Fu, Y., Zhao, X., Dai, Q., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 7, 885–887.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-sEq. Nature, 485, 201–206.CrossRefPubMedGoogle Scholar
  8. 8.
    Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., et al. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell, 149, 1635–1646.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roundtree, I. A., & He, C. (2016). Nuclear m6A reader YTHDC1 regulates mRNA splicing. Trends Genetics, 32, 320–321.CrossRefGoogle Scholar
  10. 10.
    Cui, Q., Shi, H. L., Ye, P., Li, L., et al. (2017). m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Reports, 18, 2622–2634.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xiang, Y., Laurent, B., Hsu, C. H., Nachtergaele, S., et al. (2017). RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 543, 573–576.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee, A. S., Kranzusch, P. J., & Cate, J. H. (2015). eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature, 522, 111–114.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., et al. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 161, 1388–1399.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang, X., Lu, Z., Gomez, A., Hon, G. C., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 505, 117–120.CrossRefPubMedGoogle Scholar
  15. 15.
    Desrosiers, R., Friderici, K., & Rottman, F. (1974). Identification of methylated nucleosides in messenger-RNA from Novikoff hepatoma-cells. Proceedings of the National Academy of Sciences USA, 71, 3971–3975.CrossRefGoogle Scholar
  16. 16.
    Batista, P. J., Molinie, B., Wang, J., Qu, K., et al. (2014). m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 15, 707–719.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Molinie, B., Wang, J., Lim, K. S., Hillebrand, R., et al. (2016). m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nature Methods, 13, 692–698.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu, J., Yue, Y., Han, D., Wang, X., et al. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chemical Biology, 10, 93–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Ping, X. L., Sun, B. F., Wang, L., Xiao, W., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 24, 177–189.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zheng, G. Q., Dahl, J. A., Niu, Y. M., Fedorcsak, P., et al. (2013). ALKBH5 Is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 49, 18–29.CrossRefPubMedGoogle Scholar
  21. 21.
    Narayan, P., & Rottman, F. M. (1988). An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science, 242, 1159–1162.CrossRefPubMedGoogle Scholar
  22. 22.
    Bokar, J. A., Rath-Shambaugh, M. E., Ludwiczak, R., Narayan, P., et al. (1994). Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. Journal of Biological Chemistry, 269, 17697–17704.PubMedGoogle Scholar
  23. 23.
    Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G., et al. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 3, 1233–1247.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang, X., Feng, J., Xue, Y., Guan, Z., et al. (2017). Corrigendum: Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature, 542, 260.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang, P., Doxtader, K. A., & Nam, Y. (2016). Basis for Cooperative function of Mettl3 and Mettl14 methyltransferases. Molecular Cell, 63, 306–317. Structural.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang, Y., Li, Y., Toth, J. I., Petroski, M. D., et al. (2014). N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nature Cell Biology, 16, 191–198.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A. A., et al. (2015). m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science, 347, 1002–1006.CrossRefPubMedGoogle Scholar
  28. 28.
    Gerken, T., Girard, C. A., Tung, Y. C., Webby, C. J., et al. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science, 318, 1469–1472.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Scuteri, A., Sanna, S., Chen, W. M., Uda, M., et al. (2010). Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genetics.  https://doi.org/10.1371/journal.pgen.0030115.CrossRefGoogle Scholar
  31. 31.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jaffrey, S. R., & Kharas, M. G. (2017). Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Medicine, 9, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang, S. W., Sun, C. X., Li, J. H., Zhang, E. B., et al. (2017). Roles of RNA methylation by means of N6-methyladenosine in human cancers. Cancer Letters, 408, 112–120.CrossRefPubMedGoogle Scholar
  34. 34.
    Fustin, J. M., Doi, M., Yamaguchi, Y., Hida, H., et al. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell, 155, 793–806.CrossRefPubMedGoogle Scholar
  35. 35.
    Akhtar, R. A., Reddy, A. B., Maywood, E. S., Clayton, J. D., et al. (2002). Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Current Biology, 12, 540–550.CrossRefPubMedGoogle Scholar
  36. 36.
    Koike, N., Yoo, S. H., Huang, H. C., Kumar, V., et al. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science, 338, 349–354.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kennedy, E. M., Bogerd, H. P., Kornepati, A. V. R., Kang, D., et al. (2017). Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression (vol 19, pg 675, 2016). Cell Host & Microbe, 22, 830–830.CrossRefGoogle Scholar
  38. 38.
    Brocard, M., Ruggieri, A., & Locker, N. (2017). m6A RNA methylation, a new hallmark in virus-host interactions. Journal of General Virology, 98, 2207–2214.CrossRefPubMedGoogle Scholar
  39. 39.
    Li, H. B., Tong, J. Y., Zhu, S., Batista, P. J., et al. (2017). m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 548, 338–342.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li, L. J., Fan, Y. G., Leng, R. X., Pan, H. F., et al. (2018). Potential link between m6A modification and systemic lupus erythematosus. Molecular Immunology, 93, 55–63.CrossRefPubMedGoogle Scholar
  41. 41.
    Kan, L., Grozhik, A. V., Vedanayagam, J., Patil, D. P., et al. (2017). The m6A pathway facilitates sex determination in Drosophila. Nature Communications, 8, 15737.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Haussmann, I. U., Bodi, Z., Sanchez-Moran, E., Mongan, N. P., et al. (2016). m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature, 540, 301–304.CrossRefPubMedGoogle Scholar
  43. 43.
    Roost, C., Lynch, S. R., Batista, P. J., Qu, K., et al. (2015). Correction to “structure and thermodynamics of N6-methyladenosine in RNA: A spring-loaded base modification”. Journal of the American Chemical Society, 137, 8308.Google Scholar
  44. 44.
    Imai, Y., Matsuo, N., Ogawa, S., Tohyama, M., et al. (1998). Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation. Molecular Brain Research, 53, 33–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Hartmann, A. M., Nayler, O., Schwaiger, F. W., Obermeier, A., et al. (1999). The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Molecular Biology of the Cell, 10, 3909–3926.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Xu, C., Wang, X., Liu, K., Roundtree, I. A., et al. (2015). Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain (vol 10, pg 927, 2014). Nature Chemical Biology, 11, 815.CrossRefPubMedGoogle Scholar
  47. 47.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stoilov, P., Rafalska, I., & Stamm, S. (2002). YTH: A new domain in nuclear proteins. Trends in Biochemical Sciences, 27, 495–497.CrossRefPubMedGoogle Scholar
  49. 49.
    Hoffman, D. W., Query, C. C., Golden, B. L., White, S. W., et al. (1991). RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proceedings of the National Academy of Sciences USA, 88, 2495–2499.CrossRefGoogle Scholar
  50. 50.
    Luo, S. K., & Tong, L. (2014). Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proceedings of the National Academy of Sciences USA, 111, 13834–13839.CrossRefGoogle Scholar
  51. 51.
    Zhu, T., Roundtree, I. A., Wang, P., Wang, X., et al. (2014). Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Research, 24, 1493–1496.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Theler, D., Dominguez, C., Blatter, M., Boudet, J., et al. (2014). Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. Nucleic Acids Research, 42, 13911–13919.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li, F., Zhao, D., Wu, J., & Shi, Y. (2014). Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Research, 24, 1490–1492.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yang, X., Li, H., Huang, Y., & Liu, S. (2013). The dataset for protein-RNA binding affinity. Protein Sci, 22, 1808–1811.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mauer, J., Luo, X., Blanjoie, A., Jiao, X., et al. (2017). Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature, 541, 371–375.CrossRefPubMedGoogle Scholar
  56. 56.
    Wei, C. M., & Moss, B. (1975). Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA. Proceedings of the National Academy of Sciences USA, 72, 318–322.CrossRefGoogle Scholar
  57. 57.
    Patil, D. P., Chen, C. K., Pickering, B. F., Chow, A., et al. (2016). m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 537, 369–373.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dai, X. X., Wang, T. L., Gonzalez, G., & Wang, Y. S. (2018). Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Analytical Chemistry, 90, 6380–6384.CrossRefPubMedGoogle Scholar
  59. 59.
    Safra, M., Sas-Chen, A., Nir, R., Winkler, R., et al. (2017). The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature, 551, 251.PubMedGoogle Scholar
  60. 60.
    Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., et al. (2016). The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature, 530, 441.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Oates, M. E., Romero, P., Ishida, T., Ghalwash, M., et al. (2013). (DP2)-P-2: Database of disordered protein predictions. Nucleic Acids Research, 41, D508–D516.CrossRefPubMedGoogle Scholar
  62. 62.
    Du, H., Zhao, Y., He, J. Q., Zhang, Y., et al. (2016). YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nature Communications, 7, 12626.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lichinchi, G., Gao, S., Saletore, Y., Gonzalez, G. M., et al. (2016). Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nature Microbiology, 1, 16011.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tanabe, A., Tanikawa, K., Tsunetomi, M., Takai, K., et al. (2016). RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1 alpha mRNA is translated. Cancer Letter, 376, 34–42.CrossRefGoogle Scholar
  65. 65.
    Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., et al. (2015). 5′ UTR m6A promotes cap-independent translation. Cell, 163, 999–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Alarcon, C. R., Goodarzi, H., Lee, H., Liu, X. H., et al. (2015). HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell, 162, 1299–1308.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chen, K., Lu, Z., Wang, X., Fu, Y., et al. (2015). High-resolution N6-methyladenosine map using photo-crosslinking-assisted m6A sequencing. Angewandte Chemie International Edition, 54, 1587–1590.CrossRefGoogle Scholar
  68. 68.
    Wu, B. X., Su, S. C., Patil, D. P., Liu, H. H., et al. (2018). Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nature Communications, 9, 420CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Huang, H., Weng, H., Sun, W., Qin, X., et al., (2018). Author Correction: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 20, 285–295.Google Scholar
  70. 70.
    Li, D. Y., Zhang, H. J., Hong, Y. B., Huang, L., et al. (2014). Genome-wide identification, biochemical characterization, and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and rice. Plant Molecular Biology Reporter, 32, 1169–1186.CrossRefGoogle Scholar
  71. 71.
    Reichel, M., Liao, Y., Rettel, M., Ragan, C., et al. (2016). In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. The Plant Cell, 28, 2435–2452.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Arribas-Hernandez, L., Bressendorff, S., Hansen, M. H., Poulsen, C., et al. (2018). An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis. The Plant Cell, 30, 952–967.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Tirumuru, N., Zhao, B. S., Lu, W. X., Lu, Z. K., et al., (2016). N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife, 5, e15528.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Nguyen, T. T., Ma, L. N., Slovak, M. L., Bangs, C. D., et al. (2006). Identification of novel Runx1 (AML1) translocation partner genes SH3D19, YTHDF2, and ZNF687 in acute myeloid leukemia. Genes Chromosomes Cancer, 45, 918–932.CrossRefPubMedGoogle Scholar
  75. 75.
    Zhou, J., Wan, J., Gao, X., Zhang, X., et al. (2015). Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature, 526, 591–594.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Wang, X., Sun, B., Jiang, Q. (2018). mRNA m6A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes. International Journal of Obesity, 42, 1912–1924.Google Scholar
  77. 77.
    Wu, R., Yao, Y., Jiang, Q., Cai, M., et al. (2018). Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m6A-YTHDF2-dependent manner. International Journal of Obesity (London), 42, 1378–1388.CrossRefGoogle Scholar
  78. 78.
    Zhao, B. S., Wang, X., Beadell, A. V., Lu, Z., et al. (2017). m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 542, 475–478.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wei, L. H., Song, P. Z., Wang, Y., Lu, Z. K., et al. (2018). The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. The Plant Cell, 30, 968–985.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Scutenaire, J., Deragon, J. M., Jean, V., Benhamed, M., et al. (2018). The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. The Plant Cell, 30, 986–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hsu, P. J., Zhu, Y. F., Ma, H. H., Guo, Y. H., et al. (2017). YTHDC2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 27, 1115–1127.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Jain, D., Puno, M. R., Meydan, C., Lailler, N., et al. (2018). ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife, 7, e30919.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Drayman, N., Karin, O., Mayo, A., Danon, T., et al. (2017). Dynamic proteomics of herpes simplex virus infection. MBio.  https://doi.org/10.1128/mBio.01612-17.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ma, S., Menon, R., Poulos, R. C., & Wong, J. W. H. (2017). Proteogenomic analysis prioritises functional single nucleotide variants in cancer samples. Oncotarget, 8, 95841–95852.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Shichino, Y., Otsubo, Y., Kimori, Y., Yamamoto, M., et al. (2018). YTH-RNA-binding protein prevents deleterious expression of meiotic proteins by tethering their mRNAs to nuclear foci. Elife.  https://doi.org/10.7554/eLife.32155.001.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Shi, H. L., Wang, X., Lu, Z. K., Zhao, B. X. S., et al. (2017). YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research, 27, 315–328.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hubstenberger, A., Courel, M., Benard, M., Souquere, S., et al. (2017). P-body purification reveals the condensation of repressed mRNA regulons. Molecular Cell, 68, 144–157 e5.CrossRefPubMedGoogle Scholar
  88. 88.
    Li, A., Chen, Y. S., Ping, X. L., Yang, X., et al. (2017). Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Research, 27, 444–447.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhang, Z. Y., Theler, D., Kaminska, K. H., Hiller, M., et al. (2010). The YTH domain is a novel RNA binding domain. Journal of Biological Chemistry, 285, 14701–14710.CrossRefPubMedGoogle Scholar
  90. 90.
    Ke, S. D., Pandya-Jones, A., Saito, Y., Fak, J. J., et al. (2017). m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes & Development, 31, 990–1006.CrossRefGoogle Scholar
  91. 91.
    Engreitz, J. M., Pandya-Jones, A., McDonel, P., Shishkin, A., et al. (2013). The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science, 341,1237973.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kretschmer, J., Rao, H., Hackert, P., Sloan, K. E., et al. (2018). The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA, 24, 1339–1350.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tanabe, A., Konno, J., Tanikawa, K., & Sahara, H. (2014). Transcriptional machinery of TNF-alpha-inducible YTH domain containing 2 (YTHDC2) gene. Gene, 535, 24–32.CrossRefPubMedGoogle Scholar
  94. 94.
    Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., et al. (2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Research, 43, D512–D520.CrossRefPubMedGoogle Scholar
  95. 95.
    Kato, M., Han, T. N. W., Xie, S. H., Shi, K., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 149, 753–767.CrossRefPubMedGoogle Scholar
  96. 96.
    Thinon, E., Serwa, R. A., Broncel, M., Brannigan, J. A., et al. (2014). Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nature Communications, 5, 4919.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Lichinchi, G., Zhao, B. S., Wu, Y. A., Lu, Z. K., et al. (2016). Dynamics of human and viral RNA methylation during zika virus infection. Cell Host & Microbe, 20, 666–673.CrossRefGoogle Scholar
  98. 98.
    Gokhale, N. S., McIntyre, A. B. R., McFadden, M. J., Roder, A. E., et al. (2016). N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host & Microbe, 20, 654–665.CrossRefGoogle Scholar
  99. 99.
    Dixit, D., Xie, Q., Rich, J. N., & Zhao, J. C. (2017). Messenger rna methylation regulates glioblastoma tumorigenesis. Cancer Cell, 31, 474–475.CrossRefPubMedGoogle Scholar
  100. 100.
    Zhang, S. C., Zhao, B. S., Zhou, A. D., Lin, K. Y., et al. (2017). m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell, 31, 591–606.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kwok, C. T., Marshall, A. D., Rasko, J. E. J., & Wong, J. J. L. (2017). Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia (vol 10, 39, 2017). Journal of Hematology & Oncology, 10, 39.CrossRefGoogle Scholar
  102. 102.
    Canaani, D., Kahana, C., Lavi, S., & Groner, Y. (1979). Identification and mapping of N6-methyladenosine containing sequences in Simian Virus-40 RNA. Nucleic Acids Research, 6, 2879–2899.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Y. L. Zhao
    • 1
  • Y. H. Liu
    • 1
  • R. F. Wu
    • 1
  • Z. Bi
    • 1
  • Y. X. Yao
    • 1
  • Q. Liu
    • 1
  • Y. Z. Wang
    • 1
  • X. X. Wang
    • 1
    Email author
  1. 1.College of Animal SciencesZhejiang UniversityHangzhouChina

Personalised recommendations