Skip to main content
Log in

Genome-Wide Identification, Biochemical Characterization, and Expression Analyses of the YTH Domain-Containing RNA-Binding Protein Family in Arabidopsis and Rice

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

RNA-binding proteins are critical to RNA metabolism in cells and, thus, play important roles in diverse biological processes. In the present study, we identified the YTH domain-containing RNA-binding protein (RBP) family in Arabidopsis thaliana and rice at the molecular and biochemical levels. A total of 13 and 12 genes were found to encode YTH domain-containing RBPs in Arabidopsis and rice and named as AtYTH01–13 and OsYTH01–12, respectively. The phylogeny, chromosomal location, and structures of genes and proteins were analyzed. Electrophoretic mobility shift assays demonstrated that recombinant AtYTH05 protein could bind to single-stranded RNA in vitro, demonstrating that the YTH proteins have RNA-binding activity. Analyses of publicly available microarray data, gene expression by qRT-PCR, and AtYTH05 promoter activity indicate that the Arabidopsis AtYTHs and rice OsYTHs genes have distinct and diverse expression patterns in different tissues and developmental stages, showing tissue- and developmental-specific expression patterns. Furthermore, analyses of publicly available microarray data also indicate that many of the Arabidopsis AtYTHs and rice OsYTHs genes might be involved in responses to various abiotic and biotic stresses as well as in response to hormones. Our data demonstrate that the YTH family proteins are a novel group of RBPs and provide useful clues to define their biological functions of this RBP family in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Addepalli B, Hunt AG (2007) A novel endonuclease activity associated with the Arabidopsis ortholog of the 30-kDa subunit of cleavage and polyadenylation specificity factor. Nucleic Acids Res 35:4453–4463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Addepalli B, Limbach PA, Hunt AG (2010) A disulfide linkage in a CCCH zinc finger motif of an Arabidopsis CPSF30 ortholog. FEBS Lett 584:4408–4412

    Article  PubMed  CAS  Google Scholar 

  • Albert M (2013) Peptides as triggers of plant defence. J Exp Bot 64:5269–5279

    Article  PubMed  CAS  Google Scholar 

  • Alfano JR, Bauer DW, Milos TM, Collmer A (1996) Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol Microbiol 19:715–728

    Article  PubMed  CAS  Google Scholar 

  • Ambrosone A, Costa A, Leone A, Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Sci 182:12–18

    Article  PubMed  CAS  Google Scholar 

  • Bjellqvist B, Basse B, Olsen E, Celis JE (1994) Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15:529–539

    Article  PubMed  CAS  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant-pathogen interactions. J Plant Res 124:489–499

    Article  PubMed  CAS  Google Scholar 

  • Chen LY, Lingner J (2012) AUF1/HnRNP D RNA binding protein functions in telomere maintenance. Mol Cell 47:1–2

    Article  PubMed  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 39:D301–D308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG (2006) Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. Plant Physiol 140:1507–1521

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  PubMed  CAS  Google Scholar 

  • Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nurnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32:375–390

    Article  PubMed  CAS  Google Scholar 

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  PubMed  CAS  Google Scholar 

  • Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, Chikashige Y, Hiraoka Y, Yamashita A, Yamamoto M (2006) Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442:45–50

    Article  PubMed  CAS  Google Scholar 

  • Hartmann AM, Nayler O, Schwaiger FW, Obermeier A, Stamm S (1999) The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59fyn. Mol Biol Cell 10:3909–3926

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hirschfeld M, Zhang B, Jaeger M, Stamm S, Erbes T, Mayer S, Tong X, Stickeler E (2014) Hypoxia-dependent mRNA expression pattern of splicing factor YT521 and its impact on oncological important target gene expression. Mol Carcinog. doi:10.1002/mc.22045

    PubMed  Google Scholar 

  • Hoffman DW, Query CC, Golden BL, White SW, Keene JD (1991) RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci U S A 88:2495–2499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huh SU, Paek KH (2013) Plant RNA binding proteins for control of RNA virus infection. Front Physiol 4:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai Y, Matsuo N, Ogawa S, Tohyama M, Takagi T (1998) Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation. Brain Res Mol Brain Res 53:33–40

    Article  PubMed  CAS  Google Scholar 

  • Iost I, Dreyfus M, Linder P (1999) Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem 274:17677–17683

    Article  PubMed  CAS  Google Scholar 

  • Janga SC, Mittal N (2011) Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins. Adv Exp Med Biol 722:103–117

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johnstone O, Lasko P (2001) Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 35:365–406

    Article  PubMed  CAS  Google Scholar 

  • Kang HJ, Jeong SJ, Kim KN, Baek IJ, Chang M, Kang CM, Park YS, Yun CW (2014) A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J 457:391–400

    Article  PubMed  CAS  Google Scholar 

  • Kim TH (2012) Plant stress surveillance monitored by ABA and disease signaling interactions. Mol Cells 33:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Y, Zhang D, Wang L, Li D (2013) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep 31:1446–1460

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta DeltaC(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  PubMed  CAS  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  PubMed  CAS  Google Scholar 

  • McPheeters DS, Cremona N, Sunder S, Chen HM, Averbeck N, Leatherwood J, Wise JA (2009) A complex gene regulatory mechanism that operates at the nexus of multiple RNA processing decisions. Nat Struct Mol Biol 16:255–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mittal N, Scherrer T, Gerber AP, Janga SC (2011) Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins. J Mol Biol 409:466–479

    Article  PubMed  CAS  Google Scholar 

  • Morris AR, Mukherjee N, Keene JD (2010) Systematic analysis of posttranscriptional gene expression. Wiley Interdiscip Rev Syst Biol Med 2:162–180

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32:959–970

    Article  PubMed  CAS  Google Scholar 

  • Newman MA, Dow JM, Molinaro A, Parrilli M (2007) Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13:69–84

    Article  PubMed  CAS  Google Scholar 

  • Ok SH, Jeong HJ, Bae JM, Shin JS, Luan S, Kim KN (2005) Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization. Plant Physiol 139:138–150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pallas V, Gomez G (2013) Phloem RNA-binding proteins as potential components of the long-distance RNA transport system. Front Plant Sci 4:130

    PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  PubMed  CAS  Google Scholar 

  • Rafalska I, Zhang Z, Benderska N, Wolff H, Hartmann AM, Brack-Werner R, Stamm S (2004) The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation. Hum Mol Genet 13:1535–1549

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1996) PHD: predicting one dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539

    Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stoilov P, Rafalska I, Stamm S (2002) YTH: a new domain in nuclear proteins. Trends Biochem Sci 27:495–497

    Article  PubMed  CAS  Google Scholar 

  • Stoss O, Novoyatleva T, Gencheva M, Olbrich M, Benderska N, Stamm S (2004) p59fyn-mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1. Mol Cell Neurosci 27:8–21

    Article  PubMed  CAS  Google Scholar 

  • Stower H (2014) Gene regulation: translation steps up to a regulatory role. Nat Rev Genet 15:64

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  CAS  Google Scholar 

  • Thomas PE, Wu X, Liu M, Gaffney B, Ji G, Li QQ, Hunt AG (2012) Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis. Plant Cell 24:4376–4388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120

    Article  PubMed  Google Scholar 

  • Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 3:e2410

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, zur Hausen A, Orlowska-Volk M, Jager M, Bettendorf H, Stamm S, Hirschfeld M, Yiqin O, Tong X, Gitsch G, Stickeler E (2010a) Alternative splicing-related factor YT521: an independent prognostic factor in endometrial cancer. Int J Gynecol Cancer 20:492–499

    Article  PubMed  Google Scholar 

  • Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FH, Stamm S (2010b) The YTH domain is a novel RNA binding domain. J Biol Chem 285:14701–14710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong J, Peters AH, Kafer K, Braun RE (2001) A highly conserved sequence essential for translational repression of the protamine 1 messenger RNA in murine spermatids. Biol Reprod 64:1784–1789

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Project for Research on Transgenic Plants (2011ZX08009-003-001), the National Natural Science Foundation of China (Nos. 31101422 and 31272028), the National High-Tech R&D Program (No. 2012AA101504), and the Research Fund for the Doctoral Program of Higher Education of China (20120101110070).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengming Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhang, H., Hong, Y. et al. Genome-Wide Identification, Biochemical Characterization, and Expression Analyses of the YTH Domain-Containing RNA-Binding Protein Family in Arabidopsis and Rice. Plant Mol Biol Rep 32, 1169–1186 (2014). https://doi.org/10.1007/s11105-014-0724-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0724-2

Keywords

Navigation