Journal of Molecular Neuroscience

, Volume 54, Issue 3, pp 430–442 | Cite as

Pleiotropic Functions of Pituitary Adenylyl Cyclase-Activating Polypeptide on Retinal Ontogenesis: Involvement of KLF4 in the Control of Progenitor Cell Proliferation

  • Brian Njaine
  • Maurício Rocha-Martins
  • Carlos H. Vieira-Vieira
  • Luiz D. Barbosa De-Melo
  • Rafael Linden
  • Karen Braas
  • Victor May
  • Rodrigo A. P. Martins
  • Mariana S. Silveira


We showed previously that the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP) negatively regulates proliferation of postnatal rat retinal progenitor cells through the downregulation of cyclin D1 in a cAMP/protein kinase A dependent manner. In the present study, we describe by microarray analysis several putative PACAP targets regulated by different transcription factor families. One of these families is the Sp/Klf family of transcriptional factors capable of regulating cyclin D1, and among members, we demonstrate by immunocytochemistry that KLF4 is expressed throughout rat retinal development by retinal progenitor cells and in most differentiated cell types. Using retinal explants preparations, PACAP treatment can transiently increase Klf4 mRNA levels; from electrophoretic mobility shift assays, PACAP is also able to increase the nuclear KLF4 content. From these results, we suggest that KLF4 may be involved in the anti-proliferative effects of PACAP as one mechanism regulating progenitor cell transition from proliferation to differentiation throughout retinal development.


Klf4 Cell cycle Cyclin D1 Neuropeptide PACAP Retina 



Kruppel-like factor




cAMP response element-binding protein


Retinal progenitor cells


Disintegrations per minute


Ganglion cell layer


Horseradish peroxidase


Inner cell layer


Pituitary adenylyl cyclase activating polypeptide-specific receptor


Pituitary adenylyl cyclase-activating polypeptide


Proliferating cell nuclear antigen


Phosphorylated cAMP response element-binding protein


cAMP-dependent protein kinase (protein kinase A)


Quantitative real-time polymerase chain reaction


Sonic hedgehog


Vasoactive intestinal peptide


Receptor activated by both pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide



We thank José Nilson dos Santos, José Francisco Tibúrcio, Damaris Sincorá, Gildo Brito de Souza, and Talita Martins for technical assistance and the Bioinformatics Core Facility at University of Vermont, USA. Support for the University of Vermont Neuroscience Core Facility from NIH NCRR P30RR032135/NIGMS P30GM103498 is also gratefully acknowledged. This investigation was supported by grants from CAEN/International Society for Neurochemistry, CNPq, and FAPERJ.

Conflict of Interest

There is no conflict of interest to declare.

Supplementary material

12031_2014_299_Fig8_ESM.gif (32 kb)

(GIF 32 kb)

12031_2014_299_MOESM1_ESM.tif (21 mb)
High Resolution Image (TIFF 21477 kb)


  1. Anchan RM, Reh TA (1995) Transforming growth factor-beta-3 is mitogenic for rat retinal progenitor cells in vitro. J Neurobiol 28(2):133–145PubMedCrossRefGoogle Scholar
  2. Anchan RM, Reh TA, Angello J, Balliet A, Walker M (1991) EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6(6):923–936PubMedCrossRefGoogle Scholar
  3. Atlasz T, Szabadfi K, Kiss P, Marton Z, Griecs M, Hamza L, Gaal V, Biro Z, Tamas A, Hild G, Nyitrai M, Toth G, Reglodi D, Gabriel R (2011) Effects of PACAP in UV-A radiation-induced retinal degeneration models in rats. J Mol Neurosci 43(1):51–57PubMedCrossRefGoogle Scholar
  4. Atlasz T, Szabadfi K, Reglodi D, Kiss P, Tamas A, Toth G, Molnar A, Szabo K, Gabriel R (2009) Effects of pituitary adenylate cyclase activating polypeptide and its fragments on retinal degeneration induced by neonatal monosodium glutamate treatment. Ann N Y Acad Sci 1163:348–352PubMedCrossRefGoogle Scholar
  5. Baxter PS, Martel MA, McMahon A, Kind PC, Hardingham GE (2011) Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1. J Neurochem 118(3):365–378PubMedCentralPubMedCrossRefGoogle Scholar
  6. Borba JC, Henze IP, Silveira MS, Kubrusly RC, Gardino PF, de Mello MC, Hokoc JN, de Mello FG (2005) Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as determinant of the tyrosine hydroxylase phenotype of dopaminergic cells during retina development. Brain Res Dev Brain Res 156(2):193–201PubMedCrossRefGoogle Scholar
  7. Braas KM, Schutz KC, Bond JP, Vizzard MA, Girard BM, May V (2007) Microarray analyses of pituitary adenylate cyclase activating polypeptide (PACAP)-regulated gene targets in sympathetic neurons. Peptides 28(9):1856–1870PubMedCentralPubMedCrossRefGoogle Scholar
  8. Carey RG, Li B, DiCicco-Bloom E (2002) Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. J Neurosci 22(5):1583–1591PubMedGoogle Scholar
  9. Cepko CL (1999) The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr Opin Neurobiol 9(1):37–46PubMedCrossRefGoogle Scholar
  10. Chen X, Johns DC, Geiman DE, Marban E, Dang DT, Hamlin G, Sun R, Yang VW (2001) Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J Biol Chem 276(32):30423–30428PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chen X, Whitney EM, Gao SY, Yang VW (2003) Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J Mol Biol 326(3):665–677PubMedCentralPubMedCrossRefGoogle Scholar
  12. Close JL, Gumuscu B, Reh TA (2005) Retinal neurons regulate proliferation of postnatal progenitors and Muller glia in the rat retina via TGF beta signaling. Development 132(13):3015–3026PubMedCrossRefGoogle Scholar
  13. Dai X, Segre JA (2004) Transcriptional control of epidermal specification and differentiation. Curr Opin Genet Dev 14(5):485–491PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ehlermann J, Pfisterer P, Schorle H (2003) Dynamic expression of Kruppel-like factor 4 (Klf4), a target of transcription factor AP-2alpha during murine mid-embryogenesis. Anat Rec A: Discov Mol Cell Evol Biol 273(2):677–680CrossRefGoogle Scholar
  15. Feng XH, Zhang Y, Wu RY, Derynck R (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12(14):2153–2163PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ghaleb AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW (2005) Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15(2):92–96PubMedCentralPubMedCrossRefGoogle Scholar
  17. Grueneberg DA, Henry RW, Brauer A, Novina CD, Cheriyath V, Roy AL, Gilman M (1997) A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I. Genes Dev 11(19):2482–2493PubMedCentralPubMedCrossRefGoogle Scholar
  18. Grumolato L, Louiset E, Alexandre D, Ait-Ali D, Turquier V, Fournier A, Fasolo A, Vaudry H, Anouar Y (2003) PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage: effects on electrical properties, gene markers and transcription factors in differentiating PC12 cells. Eur J Neurosci 17(1):71–82PubMedCrossRefGoogle Scholar
  19. Hatakeyama J, Kageyama R (2004) Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 15(1):83–89PubMedCrossRefGoogle Scholar
  20. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hu W, Hofstetter WL, Li H, Zhou Y, He Y, Pataer A, Wang L, Xie K, Swisher SG, Fang B (2009) Putative tumor-suppressive function of Kruppel-like factor 4 in primary lung carcinoma. Clin Cancer Res 15(18):5688–5695PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hurgin V, Novick D, Rubinstein M (2002) The promoter of IL-18 binding protein: activation by an IFN-gamma-induced complex of IFN regulatory factor 1 and CCAAT/enhancer binding protein beta. Proc Natl Acad Sci U S A 99(26):16957–16962PubMedCentralPubMedCrossRefGoogle Scholar
  23. Husmann M, Dragneva Y, Romahn E, Jehnichen P (2000) Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation. Biochem J 352(Pt 3):763–772PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jensen AM, Wallace VA (1997) Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124(2):363–371PubMedGoogle Scholar
  25. Kanekar S, Gandham M, Lucero MT (2010) PACAP protects against TNFalpha-induced cell death in olfactory epithelium and olfactory placodal cell lines. Mol Cell Neurosci 45(4):345–354PubMedCentralPubMedCrossRefGoogle Scholar
  26. Katz JP, Perreault N, Goldstein BG, Actman L, McNally SR, Silberg DG, Furth EE, Kaestner KH (2005) Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 128(4):935–945PubMedCrossRefGoogle Scholar
  27. Lang B, Song B, Davidson W, MacKenzie A, Smith N, McCaig CD, Harmar AJ, Shen S (2006) Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. J Clin Invest 116(7):1924–1934PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lelievre V, Seksenyan A, Nobuta H, Yong WH, Chhith S, Niewiadomski P, Cohen JR, Dong H, Flores A, Liau LM, Kornblum HI, Scott MP, Waschek JA (2008) Disruption of the PACAP gene promotes medulloblastoma in ptc1 mutant mice. Dev Biol 313(1):359–370PubMedCentralPubMedCrossRefGoogle Scholar
  29. Leone TC, Cresci S, Carter ME, Zhang Z, Lala DS, Strauss AW, Kelly DP (1995) The human medium chain acyl-CoA dehydrogenase gene promoter consists of a complex arrangement of nuclear receptor response elements and Sp1 binding sites. J Biol Chem 270(41):24622PubMedGoogle Scholar
  30. Lillien L, Cepko C (1992) Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115(1):253–266PubMedGoogle Scholar
  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  32. Lu N, Zhou R, DiCicco-Bloom E (1998) Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J Neurosci Res 53(6):651–662PubMedCrossRefGoogle Scholar
  33. Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 25(1):32–38PubMedCrossRefGoogle Scholar
  34. Martins RA, Linden R, Dyer MA (2006) Glutamate regulates retinal progenitors cells proliferation during development. Eur J Neurosci 24(4):969–980PubMedCrossRefGoogle Scholar
  35. Martins RA, Pearson RA (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60PubMedCrossRefGoogle Scholar
  36. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164(1):567–574PubMedCrossRefGoogle Scholar
  37. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170(2):643–648PubMedCrossRefGoogle Scholar
  38. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301PubMedCentralPubMedCrossRefGoogle Scholar
  39. Moore DL, Goldberg JL (2011) Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 71(12):1186–1211PubMedCentralPubMedCrossRefGoogle Scholar
  40. Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E (2002) Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci 22(21):9244–9254PubMedGoogle Scholar
  41. Njaine B, Martins RA, Santiago MF, Linden R, Silveira MS (2010) Pituitary adenylyl cyclase-activating polypeptide controls the proliferation of retinal progenitor cells through downregulation of cyclin D1. Eur J Neurosci 32(3):311–321PubMedCrossRefGoogle Scholar
  42. Qin S, Liu M, Niu W, Zhang CL (2011) Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci U S A 108(52):21117–21121PubMedCentralPubMedCrossRefGoogle Scholar
  43. Qin S, Zhang CL (2012) Role of Kruppel-like factor 4 in neurogenesis and radial neuronal migration in the developing cerebral cortex. Mol Cell Biol 32(21):4297–4305PubMedCentralPubMedCrossRefGoogle Scholar
  44. Reglodi D, Kiss P, Szabadfi K, Atlasz T, Gabriel R, Horvath G, Szakaly P, Sandor B, Lubics A, Laszlo E, Farkas J, Matkovits A, Brubel R, Hashimoto H, Ferencz A, Vincze A, Helyes Z, Welke L, Lakatos A, Tamas A (2012) PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci 48(3):482–492PubMedCrossRefGoogle Scholar
  45. Rehen SK, Varella MH, Freitas FG, Moraes MO, Linden R (1996) Contrasting effects of protein synthesis inhibition and of cyclic AMP on apoptosis in the developing retina. Development 122(5):1439–1448PubMedGoogle Scholar
  46. Rocha-Martins M, Njaine B, Silveira MS (2012) Avoiding pitfalls of internal controls: validation of reference genes for analysis by qRT-PCR and western blot throughout rat retinal development. PLoS One 7(8):e43028PubMedCentralPubMedCrossRefGoogle Scholar
  47. Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7(11):1074–1082PubMedCrossRefGoogle Scholar
  48. Shimizu Y, Takeuchi T, Mita S, Notsu T, Mizuguchi K, Kyo S (2010) Kruppel-like factor 4 mediates anti-proliferative effects of progesterone with G(0)/G(1) arrest in human endometrial epithelial cells. J Endocrinol Invest 33(10):745–750PubMedCrossRefGoogle Scholar
  49. Silveira MS, Costa MR, Bozza M, Linden R (2002) Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J Biol Chem 277(18):16075–16080PubMedCrossRefGoogle Scholar
  50. Suh J, Lu N, Nicot A, Tatsuno I, DiCicco-Bloom E (2001) PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat Neurosci 4(2):123–124PubMedCrossRefGoogle Scholar
  51. Szabadfi K, Szabo A, Kiss P, Reglodi D, Setalo G Jr, Kovacs K, Tamas A, Toth G, Gabriel R (2014) PACAP promotes neuron survival in early experimental diabetic retinopathy. Neurochem Int 64:84–91PubMedCrossRefGoogle Scholar
  52. Sze KL, Lee WM, Lui WY (2008) Expression of CLMP, a novel tight junction protein, is mediated via the interaction of GATA with the Kruppel family proteins, KLF4 and Sp1, in mouse TM4 Sertoli cells. J Cell Physiol 214(2):334–344PubMedCrossRefGoogle Scholar
  53. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  54. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  55. Varella MH, Correa DF, Campos CB, Chiarini LB, Linden R (1997) Protein kinases selectively modulate apoptosis in the developing retina in vitro. Neurochem Int 31(2):217–227PubMedCrossRefGoogle Scholar
  56. Varella MH, de Mello FG, Linden R (1999) Evidence for an antiapoptotic role of dopamine in developing retinal tissue. J Neurochem 73(2):485–492PubMedCrossRefGoogle Scholar
  57. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61(3):283–357PubMedCrossRefGoogle Scholar
  58. Wada Y, Nakamachi T, Endo K, Seki T, Ohtaki H, Tsuchikawa D, Hori M, Tsuchida M, Yoshikawa A, Matkovits A, Kagami N, Imai N, Fujisaka S, Usui I, Tobe K, Koide R, Takahashi H, Shioda S (2013) PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci 51(2):493–502PubMedCrossRefGoogle Scholar
  59. Wei D, Kanai M, Jia Z, Le X, Xie K (2008) Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 68(12):4631–4639PubMedCentralPubMedCrossRefGoogle Scholar
  60. Yoon HS, Chen X, Yang VW (2003) Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 278(4):2101–2105PubMedCentralPubMedCrossRefGoogle Scholar
  61. Young TL, Cepko CL (2004) A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41(6):867–879PubMedCrossRefGoogle Scholar
  62. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102(12):4459–4464PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Brian Njaine
    • 1
    • 5
  • Maurício Rocha-Martins
    • 1
  • Carlos H. Vieira-Vieira
    • 1
  • Luiz D. Barbosa De-Melo
    • 2
  • Rafael Linden
    • 1
  • Karen Braas
    • 3
  • Victor May
    • 3
  • Rodrigo A. P. Martins
    • 4
  • Mariana S. Silveira
    • 1
  1. 1.Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de BiotecnologiaInstituto Federal do Rio de Janeiro, IFRJRio de JaneiroBrazil
  3. 3.Department of Anatomy and NeurobiologyUniversity of Vermont College of MedicineBurlingtonUSA
  4. 4.Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Max-Planck-Institut für Herz- und LungenforschungBad NauheimGermany

Personalised recommendations