Skip to main content

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

Brain development is a complex process, controlled in part by locally secreted factors that regulate proliferation, differentiation, migration, survival, and maturation. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts a wide range of effects on different cell types in the brain as early as fetal stage. PACAP and its receptors are expressed in germinative neuroepithelia, suggesting that PACAP may be involved in neurogenesis. PACAP has recently been shown to regulate cell fate in various developmental contexts, in a manner dependent on dose, region, signaling, and receptor subtype. Interestingly, germ cells and embryonic stem (ES) cells also express PACAP receptors, and PACAP plays a crucial role in their development. This chapter reviews current knowledge on several aspects of PACAP in neural development, including adult neurogenesis and developmental neural diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

DCX:

Doublecortin

DISC1:

Disrupted-in-schizophrenia 1

EB:

Embryoid body

ES cell:

Embryonic stem cell

FF:

Follicular fluid

GFAP:

Glial fibrillary acidic protein

IHC:

Immunohistochemistry

iPS cell:

Induced pluripotent stem cell

ISH:

In situ hybridization

NB:

Northern blot

NeuN:

Neuronal nuclei

OB:

Olfactory bulb

PAC1R-LI:

PAC1R-like immunoreactivity

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PACAP-LI:

PACAP-like immunoreactivity

PDGF:

Platelet-derived growth factor

PGC:

Primordial germ cell

PKA:

Protein kinase A

PKC:

Protein kinase C

PTSD:

Posttraumatic stress disorder

RE:

Rostral extension

RMS:

Rostral migratory stream

RT-PCR:

Reverse transcription-polymerase chain reaction

Shh:

Sonic hedgehog

SVZ:

Subventricular zone

VIP:

Vasoactive intestinal peptide

WB:

Western blot

References

  1. Arimura A, Somogyvári-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology. 1991;129:2787–9.

    Article  CAS  PubMed  Google Scholar 

  2. Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol. 1995;16:53–88.

    Article  CAS  PubMed  Google Scholar 

  3. Arimura A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol. 1998;48:301–31.

    Article  CAS  PubMed  Google Scholar 

  4. Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev. 2000;21:619–70.

    CAS  PubMed  Google Scholar 

  5. Falluel-Morel A, Chafai M, Vaudry D, Basille M, Cazillis M, Aubert N, et al. The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differentiating effects during neurogenesis: focus on cerebellar granule neurones and embryonic stem cells. J Neuroendocrinol. 2007;19:321–7.

    Article  CAS  PubMed  Google Scholar 

  6. Shen S, Gehlert DR, Collier DA. PACAP and PAC1 receptor in brain development and behavior. Neuropeptides. 2013;47:421–30.

    Article  CAS  PubMed  Google Scholar 

  7. Nakamachi T, Farkas J, Watanabe J, Ohtaki H, Dohi K, Arata S, et al. Role of PACAP in neural stem/progenitor cell and astrocyte-from neural development to neural repair. Curr Pharm Des. 2011;17:973–84.

    Article  CAS  PubMed  Google Scholar 

  8. Seaborn T, Masmoudi-Kouli O, Fournier A, Vaudry H, Vaudry D. Protective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against apoptosis. Curr Pharm Des. 2011;17:204–14.

    Article  CAS  PubMed  Google Scholar 

  9. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev. 2000;52:269–324.

    CAS  PubMed  Google Scholar 

  10. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  11. Pesce M, Canipari R, Ferri GL, Siracusa G, De Felici M. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates adenylate cyclase and promotes proliferation of mouse primordial germ cells. Development. 1996;122:215–21.

    CAS  PubMed  Google Scholar 

  12. Li M, Arimura A. Neuropeptides of the pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide/growth hormone-releasing hormone/secretin family in testis. Endocrine. 2003;20:201–14.

    Article  CAS  PubMed  Google Scholar 

  13. Shioda S, Legradi G, Leung WC, Nakajo S, Nakaya K, Arimura A. Localization of pituitary adenylate cyclase-activating polypeptide and its messenger ribonucleic acid in the rat testis by light and electron microscopic immunocytochemistry and in situ hybridization. Endocrinology. 1994;135:818–25.

    CAS  PubMed  Google Scholar 

  14. Nakamura K, Nakamachi T, Endo K, Ito K, Machida T, Oka T, et al. Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the human testis and in testicular germ cell tumors. Andrologia. 2014;46:465–71.

    Article  CAS  PubMed  Google Scholar 

  15. Li M, Funahashi H, Mbikay M, Shioda S, Arimura A. Pituitary adenylate cyclase activating polypeptide-mediated intracrine signaling in the testicular germ cells. Endocrine. 2004;23:59–75.

    Article  CAS  PubMed  Google Scholar 

  16. Krempels K, Usdin TB, Harta G, Mezey E. PACAP acts through VIP type 2 receptors in the rat testis. Neuropeptides. 1995;29:315–20.

    Article  CAS  PubMed  Google Scholar 

  17. Brubel R, Kiss P, Vincze A, Varga A, Varnagy A, Bodis J, et al. Effects of pituitary adenylate cyclase activating polypeptide on human sperm motility. J Mol Neurosci. 2012;48:623–30.

    Article  CAS  PubMed  Google Scholar 

  18. Gräs S, Hannibal J, Georg B, Fahrenkrug J. Transient periovulatory expression of pituitary adenylate cyclase activating peptide in rat ovarian cells. Endocrinology. 1996;137:4779–85.

    Article  PubMed  Google Scholar 

  19. Scaldaferri L, Arora K, Lee SH, Catt KJ, Moretti C. Expression of PACAP and its type-I receptor isoforms in the rat ovary. Mol Cell Endocrinol. 1996;117:227–32.

    Article  CAS  PubMed  Google Scholar 

  20. Morelli MB, Barberi M, Gambardella A, Borini A, Cecconi S, Coticchio G, et al. Characterization, expression, and functional activity of pituitary adenylate cyclase-activating polypeptide and its receptors in human granulosa-luteal cells. J Clin Endocrinol Metab. 2008;93:4924–32.

    Article  CAS  PubMed  Google Scholar 

  21. Reglodi D, Tamas A, Koppan M, Szogyi D, Welke L. Role of PACAP in female fertility and reproduction at gonadal level—recent advances. Front Endocrinol (Lausanne). 2012;3:155.

    Google Scholar 

  22. Vaccari S, Latini S, Barberi M, Teti A, Stefanini M, Canipari R. Characterization and expression of different pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide receptors in rat ovarian follicles. J Endocrinol. 2006;191:287–99.

    Article  CAS  PubMed  Google Scholar 

  23. Apa R, Lanzone A, Mastrandrea M, Miceli F, de Feo D, Caruso A, et al. Control of human luteal steroidogenesis: role of growth hormone-releasing hormone, vasoactive intestinal peptide, and pituitary adenylate cyclase-activating peptide. Fertil Steril. 1997;68:1097–102.

    Article  CAS  PubMed  Google Scholar 

  24. Cecconi S, Rossi G, Barberi M, Scaldaferri L, Canipari R. Effect of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on mouse preantral follicle development in vitro. Endocrinology. 2004;145:2071–9.

    Article  CAS  PubMed  Google Scholar 

  25. Brubel R, Boronkai A, Reglodi D, Racz B, Nemeth J, Kiss P, et al. Changes in the expression of pituitary adenylate cyclase-activating polypeptide in the human placenta during pregnancy and its effects on the survival of JAR choriocarcinoma cells. J Mol Neurosci. 2010;42:450–8.

    Article  CAS  PubMed  Google Scholar 

  26. Koppan M, Varnagy A, Reglodi D, Brubel R, Nemeth J, Tamas A, et al. Correlation between oocyte number and follicular fluid concentration of pituitary adenylate cyclase-activating polypeptide (PACAP) in women after superovulation treatment. J Mol Neurosci. 2012;48:617–22.

    Article  CAS  PubMed  Google Scholar 

  27. Tanii I, Aradate T, Matsuda K, Komiya A, Fuse H. PACAP-mediated sperm-cumulus cell interaction promotes fertilization. Reproduction. 2011;141:163–71.

    Article  CAS  PubMed  Google Scholar 

  28. Barberi M, Di Paolo V, Latini S, Guglielmo MC, Cecconi S, Canipari R. Expression and functional activity of PACAP and its receptors on cumulus cells: effects on oocyte maturation. Mol Cell Endocrinol. 2013;375:79–88.

    Article  CAS  PubMed  Google Scholar 

  29. Cazillis M, Gonzalez BJ, Billardon C, Lombet A, Fraichard A, Samarut J, et al. VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. Eur J Neurosci. 2004;19:798–808.

    Article  PubMed  Google Scholar 

  30. Hirose M, Hashimoto H, Shintani N, Nakanishi M, Arakawa N, Iga J, et al. Differential expression of mRNAs for PACAP and its receptors during neural differentiation of embryonic stem cells. Regul Pept. 2005;126:109–13.

    Article  CAS  PubMed  Google Scholar 

  31. Hirose M, Niewiadomski P, Tse G, Chi GC, Dong H, Lee A, et al. Pituitary adenylyl cyclase-activating peptide counteracts hedgehog-dependent motor neuron production in mouse embryonic stem cell cultures. J Neurosci Res. 2011;89:1363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chafai M, Basille M, Galas L, Rostene W, Gressens P, Vaudry H, et al. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide promote the genesis of calcium currents in differentiating mouse embryonic stem cells. Neuroscience. 2011;199:103–15.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Z, Yu R, Yang J, Liu X, Tan M, Li H, et al. Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype. PLoS One. 2012;7:e33953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watanabe J, Nakamachi T, Matsuno R, Hayashi D, Nakamura M, Kikuyama S, et al. Localization, characterization and function of pituitary adenylate cyclase-activating polypeptide during brain development. Peptides. 2007;28:1713–9.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou CJ, Shioda S, Shibanuma M, Nakajo S, Funahashi H, Nakai Y, et al. Pituitary adenylate cyclase-activating polypeptide receptors during development: expression in the rat embryo at primitive streak stage. Neuroscience. 1999;93:375–91.

    Article  CAS  PubMed  Google Scholar 

  36. Sheward WJ, Lutz EM, Harmar AJ. Expression of pituitary adenylate cyclase activating polypeptide receptors in the early mouse embryo as assessed by reverse transcription polymerase chain reaction and in situ hybridisation. Neurosci Lett. 1996;216:45–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sheward WJ, Lutz EM, Copp AJ, Harmar AJ. Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Brain Res Dev Brain Res. 1998;109:245–53.

    Article  CAS  PubMed  Google Scholar 

  38. Shuto Y, Uchida D, Onda H, Arimura A. Ontogeny of pituitary adenylate cyclase activating polypeptide and its receptor mRNA in the mouse brain. Regul Pept. 1996;67:79–83.

    Article  CAS  PubMed  Google Scholar 

  39. Basille M, Vaudry D, Coulouarn Y, Jegou S, Lihrmann I, Fournier A, et al. Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. J Comp Neurol. 2000;425:495–509.

    Article  CAS  PubMed  Google Scholar 

  40. Jaworski DM, Proctor MD. Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Brain Res Dev Brain Res. 2000;120:27–39.

    Article  CAS  PubMed  Google Scholar 

  41. Waschek JA, Casillas RA, Nguyen TB, DiCicco-Bloom EM, Carpenter EM, Rodriguez WI. Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci U S A. 1998;95:9602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Skoglösa Y, Takei N, Lindholm D. Distribution of pituitary adenylate cyclase activating polypeptide mRNA in the developing rat brain. Mol Brain Res. 1999;65:1–13.

    Article  PubMed  Google Scholar 

  43. Sakamoto M, Kageyama R, Imayoshi I. The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci. 2014;8:121.

    PubMed  PubMed Central  Google Scholar 

  44. Matsuno R, Ohtaki H, Nakamachi T, Watanabe J, Yofu S, Hayashi D, et al. Distribution and localization of pituitary adenylate cyclase-activating polypeptide-specific receptor (PAC1R) in the rostral migratory stream of the infant mouse brain. Regul Pept. 2008;145:80–7.

    Article  CAS  PubMed  Google Scholar 

  45. Hansel DE, May V, Eipper BA, Ronnett GV. Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci. 2001;21:4625–36.

    CAS  PubMed  Google Scholar 

  46. Mercer A, Rönnholm H, Holmberg J, Lundh H, Heidrich J, Zachrisson O, et al. PACAP promotes neural stem cell proliferation in adult mouse brain. J Neurosci Res. 2004;76:205–15.

    Article  CAS  PubMed  Google Scholar 

  47. Ohta S, Gregg C, Weiss S. Pituitary adenylate cyclase-activating polypeptide regulates forebrain neural stem cells and neurogenesis in vitro and in vivo. J Neurosci Res. 2006;84:1177–86.

    Article  CAS  PubMed  Google Scholar 

  48. Ago Y, Yoneyama M, Ishihama T, Kataoka S, Kawada K, Tanaka T, et al. Role of endogenous pituitary adenylate cyclase-activating polypeptide in adult hippocampal neurogenesis. Neuroscience. 2011;172:554–61.

    Article  CAS  PubMed  Google Scholar 

  49. Gao WQ, Hatten ME. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development. 1994;120:1059–70.

    CAS  PubMed  Google Scholar 

  50. Waschek JA. VIP and PACAP receptor-mediated actions on cell proliferation and survival. Ann N Y Acad Sci. 1996;805:290–300.

    Article  CAS  PubMed  Google Scholar 

  51. Gonzalez BJ, Basille M, Mei YA, Vaudry D, Fournier A, Cazin L, et al. Ontogeny of PACAP and PACAP receptors in the rat brain: role of PACAP in the cerebellum during development. Ann N Y Acad Sci. 1996;805:302–13.

    Article  CAS  PubMed  Google Scholar 

  52. Cameron DB, Raoult E, Galas L, Jiang Y, Lee K, Hu T, et al. Role of PACAP in controlling granule cell migration. Cerebellum. 2009;8:433–40.

    Article  CAS  PubMed  Google Scholar 

  53. Nicot A, Lelièvre V, Tam J, Waschek JA, DiCicco-Bloom E. Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci. 2002;22:9244–54.

    CAS  PubMed  Google Scholar 

  54. Niewiadomski P, Zhujiang A, Youssef M, Waschek JA. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell Signal. 2013;25:2222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Allais A, Burel D, Roy V, Arthaud S, Galas L, Isaac ER, et al. Balanced effect of PACAP and FasL on granule cell death during cerebellar development: a morphological, functional and behavioural characterization. J Neurochem. 2010;113:329–40.

    Article  CAS  PubMed  Google Scholar 

  56. Falluel-Morel A, Aubert N, Vaudry D, Basille M, Fontaine M, Fournier A, et al. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J Neurochem. 2004;91:1231–43.

    Article  CAS  PubMed  Google Scholar 

  57. Vaudry D, Falluel-Morel A, Basille M, Pamantung TF, Fontaine M, Fournier A, et al. Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. J Neurosci Res. 2003;72:303–16.

    Article  CAS  PubMed  Google Scholar 

  58. Falluel-Morel A, Vaudry D, Aubert N, Galas L, Benard M, Basille M, et al. Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc Natl Acad Sci U S A. 2005;102:2637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cameron DB, Galas L, Jiang Y, Raoult E, Vaudry D, Komuro H. Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience. 2007;146:697–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H. Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci U S A. 1999;96:9415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yan Y, Zhou X, Pan Z, Ma J, Waschek JA, DiCicco-Bloom E. Pro- and anti-mitogenic actions of pituitary adenylate cyclase-activating polypeptide in developing cerebral cortex: potential mediation by developmental switch of PAC1 receptor mRNA isoforms. J Neurosci. 2013;33:3865–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dicicco-Bloom E, Lu N, Pintar JE, Zhang J. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann N Y Acad Sci. 1998;865:274–89.

    Article  CAS  PubMed  Google Scholar 

  63. Ogata K, Shintani N, Hayata-Takano A, Kamo T, Higashi S, Seiriki K, et al. PACAP enhances axon outgrowth in cultured hippocampal neurons to a comparable extent as BDNF. PLoS One. 2015;10:e0120526.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kambe Y, Miyata A. Role of mitochondrial activation in PACAP dependent neurite outgrowth. J Mol Neurosci. 2012;48:550–7.

    Article  CAS  PubMed  Google Scholar 

  65. Nishimoto M, Furuta A, Aoki S, Kudo Y, Miyakawa H, Wada K. PACAP/PAC1 autocrine system promotes proliferation and astrogenesis in neural progenitor cells. Glia. 2007;55:317–27.

    Article  PubMed  Google Scholar 

  66. Ohno F, Watanabe J, Sekihara H, Hirabayashi T, Arata S, Kikuyama S, et al. Pituitary adenylate cyclase-activating polypeptide promotes differentiation of mouse neural stem cells into astrocytes. Regul Pept. 2005;126:115–22.

    Article  CAS  PubMed  Google Scholar 

  67. Watanabe J, Ohno F, Shioda S, Kikuyama S, Nakaya K, Nakajo S. Involvement of protein kinase C in the PACAP-induced differentiation of neural stem cells into astrocytes. Ann N Y Acad Sci. 2006;1070:597–601.

    Article  CAS  PubMed  Google Scholar 

  68. Watanabe J, Ohba M, Ohno F, Kikuyama S, Nakamura M, Nakaya K, et al. Pituitary adenylate cyclase-activating polypeptide-induced differentiation of embryonic neural stem cells into astrocytes is mediated via the beta isoform of protein kinase C. J Neurosci Res. 2006;84:1645–55.

    Article  CAS  PubMed  Google Scholar 

  69. Vallejo I, Vallejo M. Pituitary adenylate cyclase-activating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex. Mol Cell Neurosci. 2002;21:671–83.

    Article  CAS  PubMed  Google Scholar 

  70. Vallejo M. PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol. 2009;39:90–100.

    Article  CAS  PubMed  Google Scholar 

  71. Lelievre V, Ghiani CA, Seksenyan A, Gressens P, de Vellis J, Waschek JA. Growth factor-dependent actions of PACAP on oligodendrocyte progenitor proliferation. Regul Pept. 2006;137:58–66.

    Article  CAS  PubMed  Google Scholar 

  72. Lee M, Lelievre V, Zhao P, Torres M, Rodriguez W, Byun JY, et al. Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J Neurosci. 2001;21:3849–59.

    CAS  PubMed  Google Scholar 

  73. Gray SL, Cummings KJ, Jirik FR, Sherwood NM. Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol Endocrinol. 2001;15:1739–47.

    Article  CAS  PubMed  Google Scholar 

  74. Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, et al. Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A. 2001;98:13355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelièvre V, et al. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1194–201.

    Article  CAS  PubMed  Google Scholar 

  76. Reglodi D, Kiss P, Szabadfi K, Atlasz T, Gabriel R, Horvath G, et al. PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci. 2012;48:482–92.

    Article  CAS  PubMed  Google Scholar 

  77. Shintani N, Tomimoto S, Hashimoto H, Kawaguchi C, Baba A. Functional roles of the neuropeptide PACAP in brain and pancreas. Life Sci. 2003;74:337–43.

    Article  CAS  PubMed  Google Scholar 

  78. Isaac ER, Sherwood NM. Pituitary adenylate cyclase-activating polypeptide (PACAP) is important for embryo implantation in mice. Mol Cell Endocrinol. 2008;280:13–9.

    Article  CAS  PubMed  Google Scholar 

  79. Shintani N, Mori W, Hashimoto H, Imai M, Tanaka K, Tomimoto S, et al. Defects in reproductive functions in PACAP-deficient female mice. Regul Pept. 2002;109:45–8.

    Article  CAS  PubMed  Google Scholar 

  80. Gray SL, Yamaguchi N, Vencová P, Sherwood NM. Temperature-sensitive phenotype in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology. 2002;143:3946–54.

    Article  CAS  PubMed  Google Scholar 

  81. Cummings KJ, Willie C, Wilson RJ. Pituitary adenylate cyclase-activating polypeptide maintains neonatal breathing but not metabolism during mild reductions in ambient temperature. Am J Physiol Regul Integr Comp Physiol. 2008;294:R956–65.

    Article  CAS  PubMed  Google Scholar 

  82. Arata S, Nakamachi T, Onimaru H, Hashimoto H, Shioda S. Impaired response to hypoxia in the respiratory center is a major cause of neonatal death of the PACAP-knockout mouse. Eur J Neurosci. 2013;37:407–16.

    Article  PubMed  Google Scholar 

  83. Takuma K, Maeda Y, Ago Y, Ishihama T, Takemoto K, Nakagawa A, et al. An enriched environment ameliorates memory impairments in PACAP-deficient mice. Behav Brain Res. 2014;272:269–78.

    Article  CAS  PubMed  Google Scholar 

  84. Allais A, Burel D, Isaac ER, Gray SL, Basille M, Ravni A, et al. Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide. Eur J Neurosci. 2007;25:2604–18.

    Article  PubMed  Google Scholar 

  85. Yamada K, Matsuzaki S, Hattori T, Kuwahara R, Taniguchi M, Hashimoto H, et al. Increased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborizations. PLoS One. 2010;5:e8596.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Vincze A, Reglodi D, Helyes Z, Hashimoto H, Shintani N, Abrahám H. Role of endogenous pituitary adenylate cyclase activating polypeptide (PACAP) in myelination of the rodent brain: lessons from PACAP-deficient mice. Int J Dev Neurosci. 2011;29:923–35.

    Article  CAS  PubMed  Google Scholar 

  87. Hashimoto R, Hashimoto H, Shintani N, Chiba S, Hattori S, Okada T, et al. Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. Mol Psychiatry. 2007;12:1026–32.

    Article  CAS  PubMed  Google Scholar 

  88. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Masuo Y, Morita M, Oka S, Ishido M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: a study inspired by the physiological roles of PACAP in the brain. Regul Pept. 2004;123:225–34.

    Article  CAS  PubMed  Google Scholar 

  90. Nijmeijer JS, Arias-Vásquez A, Rommelse NN, Altink ME, Anney RJ, Asherson P, et al. Identifying loci for the overlap between attention-deficit/hyperactivity disorder and autism spectrum disorder using a genome-wide QTL linkage approach. J Am Acad Child Adolesc Psychiatry. 2010;49:675–85.

    PubMed  PubMed Central  Google Scholar 

  91. Tohyama M, Miyata S, Hattori T, Shimizu S, Matsuzaki S. Molecular basis of major psychiatric diseases such as schizophrenia and depression. Anat Sci Int. 2015;90:137–43.

    Article  CAS  PubMed  Google Scholar 

  92. Hattori T, Baba K, Matsuzaki S, Honda A, Miyoshi K, Inoue K, et al. A novel DISC1-interacting partner DISC1-binding zinc-finger protein: implication in the modulation of DISC1-dependent neurite outgrowth. Mol Psychiatry. 2007;12:398–407.

    Article  CAS  PubMed  Google Scholar 

  93. Ago Y, Hiramatsu N, Ishihama T, Hazama K, Hayata-Takano A, Shibasaki Y, et al. The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses psychomotor abnormalities and recognition memory deficits in mice lacking the pituitary adenylate cyclase-activating polypeptide. Behav Pharmacol. 2013;24:74–7.

    Article  CAS  PubMed  Google Scholar 

  94. Tajiri M, Hayata-Takano A, Seiriki K, Ogata K, Hazama K, Shintani N, et al. Serotonin 5-HT(7) receptor blockade reverses behavioral abnormalities in PACAP-deficient mice and receptor activation promotes neurite extension in primary embryonic hippocampal neurons: therapeutic implications for psychiatric disorders. J Mol Neurosci. 2012;48:473–81.

    Article  CAS  PubMed  Google Scholar 

  95. Hashimoto H, Hashimoto R, Shintani N, Tanaka K, Yamamoto A, Hatanaka M, et al. Depression-like behavior in the forced swimming test in PACAP-deficient mice: amelioration by the atypical antipsychotic risperidone. J Neurochem. 2009;110:595–602.

    Article  CAS  PubMed  Google Scholar 

  96. Almli LM, Mercer KB, Kerley K, Feng H, Bradley B, Conneely KN, et al. ADCYAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:262–72.

    Article  PubMed  Google Scholar 

  97. Smith CB, Eiden LE. Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? J Mol Neurosci. 2012;48:403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mustafa T. Pituitary adenylate cyclase-activating polypeptide (PACAP): a master regulator in central and peripheral stress responses. Adv Pharmacol. 2013;68:445–57.

    Article  CAS  PubMed  Google Scholar 

  99. Hashimoto H, Shintani N, Tanida M, Hayata A, Hashimoto R, Baba A. PACAP is implicated in the stress axes. Curr Pharm Des. 2011;17:985–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stevens JS, Almli LM, Fani N, Gutman DA, Bradley B, Norrholm SD, et al. PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proc Natl Acad Sci U S A. 2014;111:3158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Watanabe, J., Seki, T., Shioda, S. (2016). PACAP and Neural Development. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_6

Download citation

Publish with us

Policies and ethics