Skip to main content

Advertisement

Log in

Glioma Formation, Cancer Stem Cells, and Akt Signaling

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Several recent reports have provided evidence that cancer is initiated by a rare fraction of cells called “cancer stem cells” which are multipotent, self-renewing subset of the tumor. However, several issues regarding the biology and techniques of isolating these cells from solid tumors remain to be clarified. In addition, experimental data supports two possibilities for glioma cell of origin. First, that stem cells or early progenitors are transformed and show variable differentiation of their progeny during tumor development. Second, that more differentiated glia are transformed by genetic events that lead to a loss of differentiation maintenance. In human gliomas, these two theories are not mutually exclusive. In this review we will summarize both theories, and highlight outstanding issues that remain to be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., & Steindler, D. A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 39(3), 193–206.

    Article  PubMed  Google Scholar 

  2. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., & Dirks, P. B. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  PubMed  CAS  Google Scholar 

  3. Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64(19), 7011–7021.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., Pastorino, S., Purow, B. W., Christopher, N., Zhang, W., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.

    Article  PubMed  CAS  Google Scholar 

  5. Levitt, P., & Rakic, P. (1980). Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. Journal Comparative Neurology, 193(3), 815–840.

    Article  CAS  Google Scholar 

  6. Voigt, T. (1989). Development of glial cells in the cerebral wall of ferrets: Direct tracing of their transformation from radial glia into astrocytes. Journal Comparative Neurology, 289(1), 74–88.

    Article  CAS  Google Scholar 

  7. Hunter, K. E., & Hatten, M. E. (1995). Radial glial cell transformation to astrocytes is bidirectional: Regulation by a diffusible factor in embryonic forebrain. Proceedings of the National Academy of Sciences of the United States America, 92(6), 2061–2065.

    Article  CAS  Google Scholar 

  8. Ghashghaei, H. T., Weimer, J. M., Schmid, R. S., Yokota, Y., McCarthy, K. D., Popko, B., & Anton, E. S. (2007). Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes and Development, 21(24), 3258–3271.

    Article  PubMed  CAS  Google Scholar 

  9. Grinspan, J. B., Stern, J. L., Franceschini, B., & Pleasure, D. (1993). Trophic effects of basic fibroblast growth factor (bFGF) on differentiated oligodendroglia: A mechanism for regeneration of the oligodendroglial lineage. Journal of Neuroscience Research, 36(6), 672–680.

    Article  PubMed  CAS  Google Scholar 

  10. Grinspan, J. B., Reeves, M. F., Coulaloglou, M. J., Nathanson, D., & Pleasure, D. (1996). Re-entry into the cell cycle is required for bFGF-induced oligodendroglial dedifferentiation and survival. Journal of Neuroscience Research, 46(4), 456–464.

    Article  PubMed  CAS  Google Scholar 

  11. Pouly, S., Matthieu, J. M., & Honegger, P. (1994). Mature oligodendrocytes in three-dimensional brain cell culture respond to protein kinase C stimulation by dedifferentiation, proliferation and remyelination. Schweizer Archiv fur Neurologie und Psychiatrie, 145(3), 27–29.

    PubMed  CAS  Google Scholar 

  12. Sanai, N., Alvarez-Buylla, A., & Berger, M. S. (2005). Neural stem cells and the origin of gliomas. New England Journal for Medicine, 353(8), 811–822.

    Article  CAS  Google Scholar 

  13. Holland, E. C., Li, Y., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. A., & Fuller, G. N. (2000). Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. American Journal of Pathology, 157(3), 1031–1037.

    PubMed  CAS  Google Scholar 

  14. Dai, C., Celestino, J. C., Okada, Y., Louis, D. N., Fuller, G. N., & Holland, E. C. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes and Development, 15(15), 1913–1925.

    Article  PubMed  CAS  Google Scholar 

  15. Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., & Fuller, G. N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 25(1), 55–57.

    Article  PubMed  CAS  Google Scholar 

  16. Uhrbom, L., Dai, C., Celestino, J. C., Rosenblum, M. K., Fuller, G. N., & Holland, E. C. (2002). Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Research, 62(19), 5551–5558.

    PubMed  CAS  Google Scholar 

  17. Lassman, A. B., Dai, C., Fuller, G. N., Vickers, A. J., & Holland, E. C. (2004). Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biology, 1(2), 157–163.

    Article  PubMed  Google Scholar 

  18. Rich, J. N., Hans, C., Jones, B., Iversen, E. S., McLendon, R. E., Rasheed, B. K., et al. (2005). Gene expression profiling and genetic markers in glioblastoma survival. Cancer Research, 65(10), 4051–4058.

    Article  PubMed  CAS  Google Scholar 

  19. Engelhard 3rd, H. H., Butler, A. Bt., & Bauer, K. D. (1989). Quantification of the c-myc oncoprotein in human glioblastoma cells and tumor tissue. Journal of Neurosurgery, 71(2), 224–232.

    Article  PubMed  Google Scholar 

  20. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Natural Medicine, 3(7), 730–737.

    Article  CAS  Google Scholar 

  21. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States America, 100(7), 3983–3988.

    Article  CAS  Google Scholar 

  22. Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., Wicha, M., Clarke, M. F., & Simeone, D. M. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.

    Article  PubMed  CAS  Google Scholar 

  23. Maitland, N. J., Bryce, S. D., Stower, M. J., & Collins, A. T. (2006). Prostate cancer stem cells: A target for new therapies. Ernst Schering Foundation Symposium Proceedings, 5, 155–179.

    Article  PubMed  Google Scholar 

  24. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., Weissman, I. L., Clarke, M. F., & Ailles, L. E. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States America, 104(3), 973–978.

    Article  CAS  Google Scholar 

  25. O'Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    Article  PubMed  CAS  Google Scholar 

  26. Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., Barbaro, N. M., Gupta, N., Kunwar, S., Lawton, M. T., McDermott, M. W., Parsa, A. T., Manuel-Garcia Verdugo, J., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427(6976), 740–744.

    Article  PubMed  CAS  Google Scholar 

  27. Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Natural Medicine, 4(11), 1313–1317.

    Article  CAS  Google Scholar 

  28. Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann 2nd, G., Jiang, L., Kang, J., Nedergaard, M., & Goldman, S. A. (2003). Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Natural Medicine, 9(4), 439–447.

    Article  CAS  Google Scholar 

  29. de la Monte, S. M. (1989). Uniform lineage of oligodendrogliomas. American Journal of Pathology, 135(3), 529–540.

    PubMed  Google Scholar 

  30. Taylor, M. D., Poppleton, H., Fuller, C., Su, X., Liu, Y., Jensen, P., Magdaleno, S., Dalton, J., Calabrese, C., Board, J., et al. (2005). Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 8(4), 323–335.

    Article  PubMed  CAS  Google Scholar 

  31. Sharma, M. K., Mansur, D. B., Reifenberger, G., Perry, A., Leonard, J. R., Aldape, K. D., et al. (2007). Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Research, 67(3), 890–900.

    Article  PubMed  CAS  Google Scholar 

  32. Gilbertson, R. J., & Gutmann, D. H. (2007). Tumorigenesis in the brain: Location, location, location. Cancer Research, 67(12), 5579–5582.

    Article  PubMed  CAS  Google Scholar 

  33. Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.

    PubMed  CAS  Google Scholar 

  34. Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., et al. (1997). A novel five-transmembrane hematopoietic stem cell antigen: Isolation, characterization, and molecular cloning. Blood, 90(12), 5013–5021.

    PubMed  CAS  Google Scholar 

  35. Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States America, 97(26), 14720–14725.

    Article  CAS  Google Scholar 

  36. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

    PubMed  CAS  Google Scholar 

  37. Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P. J., et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Research, 67(9), 4010–4015.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, J., Sakariassen, P. O., Tsinkalovsky, O., Immervoll, H., Boe, S. O., Svendsen, A., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International Journal of Cancer, 122(4), 761–768.

    Article  CAS  Google Scholar 

  39. Zheng, X., Shen, G., Yang, X., & Liu, W. (2007). Most C6 cells are cancer stem cells: Evidence from clonal and population analyses. Cancer Research, 67(8), 3691–3697.

    Article  PubMed  CAS  Google Scholar 

  40. Ogden, A. T., Waziri, A. E., Lochhead, R. A., Fusco, D., Lopez, K., Ellis, J. A., et al. (2008). Identification of A2B5+CD133− tumor-initiating cells in adult human gliomas. Neurosurgery, 62(2), 505–514 discussion 505–514.

    Article  PubMed  Google Scholar 

  41. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., & Strasser, A. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.

    Article  PubMed  CAS  Google Scholar 

  42. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.

    Article  PubMed  CAS  Google Scholar 

  43. Hambardzumyan, D., Squatrito, M., & Holland, E. C. (2006). Radiation resistance and stem-like cells in brain tumors. Cancer Cell, 10(6), 454–456.

    Article  PubMed  CAS  Google Scholar 

  44. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444(7120), 761–765.

    Article  PubMed  CAS  Google Scholar 

  45. Aguado, T., Carracedo, A., Julien, B., Velasco, G., Milman, G., Mechoulam, R., et al. (2007). Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. Journal Biological Chemistry, 282(9), 6854–6862.

    Article  CAS  Google Scholar 

  46. Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Review Cancer, 5(4), 275–284.

    Article  CAS  Google Scholar 

  47. Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I. R., et al. (2006). Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma. Molecular Cancer, 5, 67.

    Article  PubMed  CAS  Google Scholar 

  48. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82.

    Article  PubMed  CAS  Google Scholar 

  49. Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nature Review Cancer, 7(10), 733–736.

    Article  CAS  Google Scholar 

  50. Jordan, J. D., Ma, D. K., Ming, G. L., & Song, H. (2007). Cellular niches for endogenous neural stem cells in the adult brain. CNS & Neurological Disorders Drug Targets, 6(5), 336–341.

    Article  CAS  Google Scholar 

  51. Hambardzumyan, D., Becher, O. J., Rosenblum, M. K., Pandolfi, P. P., Manova-Todorova, K., & Holland, E. C. (2008). PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes and Development, 22(4), 436–448.

    Article  PubMed  CAS  Google Scholar 

  52. Fomchenko, E. I., & Holland, E. C. (2007). Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurgery Clinics of North America, 18(1), 39–58 viii.

    Article  PubMed  Google Scholar 

  53. Becher, O. J., Hambardzumyan, D., Fomchenko, E. I., Momota, H., Mainwaring, L., Bleau, A. M., et al. (2008). Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Research, 68, 2241–2249.

    Article  PubMed  CAS  Google Scholar 

  54. Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W., & Guan, X. Y. (2008). CD133(+) HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 27, 1749–1758.

    Article  PubMed  CAS  Google Scholar 

  55. Cohen, M. H., Johnson, J. R., & Pazdur, R. (2005). Food and Drug Administration Drug approval summary: Temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clinical Cancer Research, 11(19 Pt 1), 6767–6771.

    Article  PubMed  CAS  Google Scholar 

  56. Groszer, M., Erickson, R., Scripture-Adams, D. D., Dougherty, J. D., Le Belle, J., Zack, J. A., et al. (2006). PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proceedings of the National Academy of Sciences of the United States America, 103(1), 111–116.

    Article  CAS  Google Scholar 

  57. Gil-Perotin, S., Marin-Husstege, M., Li, J., Soriano-Navarro, M., Zindy, F., Roussel, M. F., et al. (2006). Loss of p53 induces changes in the behavior of subventricular zone cells: Implication for the genesis of glial tumors. Journal of Neuroscience, 26(4), 1107–1116.

    Article  PubMed  CAS  Google Scholar 

  58. Meletis, K., Wirta, V., Hede, S. M., Nister, M., Lundeberg, J., & Frisen, J. (2006). p53 suppresses the self-renewal of adult neural stem cells. Development, 133(2), 363–369.

    Article  PubMed  CAS  Google Scholar 

  59. Hartmann, W., Digon-Sontgerath, B., Koch, A., Waha, A., Endl, E., Dani, I., et al. (2006). Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clinical Cancer Research, 12(10), 3019–3027.

    Article  PubMed  CAS  Google Scholar 

  60. Rao, G., Pedone, C. A., Del Valle, L., Reiss, K., Holland, E. C., & Fults, D. W. (2004). Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene, 23(36), 6156–6162.

    Article  PubMed  CAS  Google Scholar 

  61. Lopiccolo, J., Blumenthal, G. M., Bernstein, W. B., & Dennis, P. A. (2008). Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resistance Updates, 11, 32–50.

    Article  PubMed  CAS  Google Scholar 

  62. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2), 231–241.

    Article  PubMed  CAS  Google Scholar 

  63. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., et al. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282(5392), 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  64. Mayo, L. D., & Donner, D. B. (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences of the United States America, 98(20), 11598–11603.

    Article  CAS  Google Scholar 

  65. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6), 857–868.

    Article  PubMed  CAS  Google Scholar 

  66. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378(6559), 785–789.

    Article  PubMed  CAS  Google Scholar 

  67. Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173.

    Article  PubMed  CAS  Google Scholar 

  68. Rajasekhar, V. K., Viale, A., Socci, N. D., Wiedmann, M., Hu, X., & Holland, E. C. (2003). Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Molecular Cell, 12(4), 889–901.

    Article  PubMed  CAS  Google Scholar 

  69. Hu, X., Pandolfi, P. P., Li, Y., Koutcher, J. A., Rosenblum, M., & Holland, E. C. (2005). mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia, 7(4), 356–368.

    Article  PubMed  CAS  Google Scholar 

  70. Strojnik, T., Rosland V, G., Sakariassen, P. O., Kavalar, R., & Lah, T. (2007). Neural stem cell markers, nestin and Musashi proteins, in the progression of human glioma: Correlation of nestin with prognosis of patient survival. Surgical Neurology, 68(2), 133–143 discussion 134–143.

    Article  PubMed  Google Scholar 

  71. Zeppernick, F., Ahmadi, R., Campos, B., Dictus, C., Helmke, B. M., Becker, N., et al. (2008). Stem cell marker CD133 affects clinical outcome in glioma patients. Clinical Cancer Research, 14(1), 123–129.

    Article  PubMed  CAS  Google Scholar 

  72. Beier, D., Wischhusen, J., Dietmaier, W., Hau, P., Proescholdt, M., Brawanski, A., et al. (2008). CD133 Expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathology, 18(3), 370–377.

    Article  PubMed  Google Scholar 

  73. Quinones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., et al. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells. Journal of Comparative Neurology, 494(3), 415–434.

    Article  PubMed  Google Scholar 

  74. Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.

    Article  PubMed  CAS  Google Scholar 

  75. Yilmaz, O. H., Morrison, S. J. (2008). The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells: A mechanistic difference between normal and cancer stem cells. Blood Cells, Molecules & Diseases, 41(1), 73–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Quanchao Zhang and Jim Finney for technical assistance, and Rebecca Bish for critical reading of the manuscript. This work was supported by the Witmer foundation, and NIH grants CA100688 and RO1 CA099489. M.S. is funded by “Federazione Italiana Ricerca Cancro (FIRC)” fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hambardzumyan, D., Squatrito, M., Carbajal, E. et al. Glioma Formation, Cancer Stem Cells, and Akt Signaling. Stem Cell Rev 4, 203–210 (2008). https://doi.org/10.1007/s12015-008-9021-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9021-5

Keywords

Navigation