Skip to main content
Log in

The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The stiffness of myocardial tissue changes significantly at birth and during neonatal development, concurrent with significant changes in contractile and electrical maturation of cardiomyocytes. Previous studies by our group have shown that cardiomyocytes generate maximum contractile force when cultured on a substrate with a stiffness approximating native cardiac tissue. However, effects of substrate stiffness on the electrophysiology and ion currents in cardiomyocytes have not been fully characterized. In this study, neonatal rat ventricular myocytes were cultured on the surface of flat polyacrylamide hydrogels with elastic moduli ranging from 1 to 25 kPa. Using whole-cell patch clamping, action potentials and L-type calcium currents were recorded. Cardiomyocytes cultured on hydrogels with a 9 kPa elastic modulus, similar to that of native myocardium, had the longest action potential duration. Additionally, the voltage at maximum calcium flux significantly decreased in cardiomyocytes on hydrogels with an elastic modulus higher than 9 kPa, and the mean inactivation voltage decreased with increasing stiffness. Interestingly, the expression of the L-type calcium channel subunit α gene and channel localization did not change with stiffness. Substrate stiffness significantly affects action potential length and calcium flux in cultured neonatal rat cardiomyocytes in a manner that may be unrelated to calcium channel expression. These results may explain functional differences in cardiomyocytes resulting from changes in the elastic modulus of the extracellular matrix, as observed during embryonic development, in ischemic regions of the heart after myocardial infarction, and during dilated cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jacot, J. G., Martin, J. C., & Hunt, D. L. (2010). Mechanobiology of cardiomyocyte development. Journal of Biomechanics, 43, 93–98.

    Article  PubMed  Google Scholar 

  2. Berry, M. F., Engler, A. J., Woo, Y. J., Pirolli, T. J., Bish, L. T., Jayasankar, V., Morine, K. J., Gardner, T. J., Discher, D. E., & Sweeney, H. L. (2006). Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. American Journal of Physiology-Heart and Circulatory Physiology, 290, H2196–H2203.

    Article  CAS  PubMed  Google Scholar 

  3. Young, J. L., & Engler, A. J. (2011). Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials, 32, 1002–1009.

    Article  CAS  PubMed  Google Scholar 

  4. Jacot, J. G., McCulloch, A. D., & Omens, J. H. (2008). Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophysical Journal, 95, 3479–3487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tallawi, M., Rai, R., Boccaccini, A. R., & Aifantis, K. E. (2015). Effect of substrate mechanics on cardiomyocyte maturation and growth. Tissue Engineering Part B Reviews, 21, 157–165.

    Article  CAS  PubMed  Google Scholar 

  6. Engler, A. J., Carag-Krieger, C., Johnson, C. P., Raab, M., Tang, H. Y., Speicher, D. W., Sanger, J. W., Sanger, J. M., & Discher, D. E. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of Cell Science, 121, 3794–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spach, M. S., Heidlage, J. F., Barr, R. C., & Dolber, P. C. (2004). Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm, 1, 500–515.

    Article  PubMed  Google Scholar 

  8. Rodriguez, A. G., Han, S. J., Regnier, M., & Sniadecki, N. J. (2011). Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophysics Journal, 101, 2455–2464.

    Article  CAS  Google Scholar 

  9. Saygili, E., Rana, O. R., Saygili, E., Reuter, H., Frank, K., Schwinger, R. H., Muller-Ehmsen, J., & Zobel, C. (2007). Losartan prevents stretch-induced electrical remodeling in cultured atrial neonatal myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 292, H2898–H2905.

    Article  CAS  PubMed  Google Scholar 

  10. Rana, O. R., Zobel, C., Saygili, E., Brixius, K., Gramley, F., Schimpf, T., Mischke, K., Frechen, D., Knackstedt, C., Schwinger, R. H., Schauerte, P., & Saygili, E. (2008). A simple device to apply equibiaxial strain to cells cultured on flexible membranes. American Journal of Physiology-Heart and Circulatory Physiology, 294, H532–H540.

    Article  CAS  PubMed  Google Scholar 

  11. Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. Journal of Cell Biology, 166, 877–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pok, S., Benavides, O. M., Hallal, P., Jacot, J. G. (2014) Use of myocardial matrix in a chitosan-based full-thickness heart patch. Tissue Engineering Part A.

  13. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B., & Chadwick, R. S. (2002). Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophysics Journal, 82, 2798–2810.

    Article  CAS  Google Scholar 

  14. Boudou, T., Ohayon, J., Picart, C., & Tracqui, P. (2006). An extended relationship for the characterization of Young’s modulus and Poisson’s ratio of tunable polyacrylamide gels. Biorheology, 43, 721–728.

    CAS  PubMed  Google Scholar 

  15. Xi, Y., Wu, G., Ai, T., Cheng, N., Kalisnik, J. M., Sun, J., Abbasi, S., Yang, D., Fan, C., Yuan, X., Wang, S., Elayda, M., Gregoric, I. D., Kantharia, B. K., Lin, S. F., & Cheng, J. (2013). Ionic mechanisms underlying the effects of vasoactive intestinal polypeptide on canine atrial myocardium. Circulation: Arrhythmia and Electrophysiology, 6, 976–983.

    CAS  Google Scholar 

  16. Osorio, N., & Delmas, P. (2011). Patch clamp recording from enteric neurons in situ. Nature. Protocols, 6, 15–27.

    Article  CAS  PubMed  Google Scholar 

  17. Raman, I. M., & Bean, B. P. (1997). Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. Journal of Neuroscience, 17, 4517–4526.

    CAS  PubMed  Google Scholar 

  18. Pelham, Jr., R. J., & Wang, Y. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of Naturall Academy Science U S A, 94, 13661–13665.

    Article  CAS  Google Scholar 

  19. Calvet, D., Wong, J. Y., & Giasson, S. (2004). Rheological monitoring of polyacrylamide gelation: Importance of cross-link density and temperature. Macromolecules, 37, 7762–7771.

    Article  CAS  Google Scholar 

  20. Peyton, S. R., Kim, P. D., Ghajar, C. M., Seliktar, D., & Putnam, A. J. (2008). The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials, 29, 2597–2607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhana, B., Iyer, R. K., Chen, W. L., Zhao, R., Sider, K. L., Likhitpanichkul, M., Simmons, C. A., & Radisic, M. (2010). Influence of substrate stiffness on the phenotype of heart cells. Biotechnology and Bioengineering, 105, 1148–1160.

    CAS  PubMed  Google Scholar 

  22. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  23. Leach, J. B., Brown, X. Q., Jacot, J. G., Dimilla, P. A., & Wong, J. Y. (2007). Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. Journal of Neural Engineering, 4, 26–34.

    Article  PubMed  Google Scholar 

  24. Shapira-Schweitzer, K., & Seliktar, D. (2007). Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomaterials, 3, 33–41.

    Article  CAS  Google Scholar 

  25. Janmey, P. A., Winer, J. P., Murray, M. E., & Wen, Q. (2009). The hard life of soft cells. Cell Motility and Cytoskeleton, 66, 597–605.

    Article  Google Scholar 

  26. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V., & Wang, Y. L. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. Journal of Cell Biology, 153, 881–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Linke, W. A. (2008). Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovascular Research, 77, 637–648.

    CAS  PubMed  Google Scholar 

  28. Solon, J., Levental, I., Sengupta, K., Georges, P. C., & Janmey, P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysics Journal, 93, 4453–4461.

    Article  CAS  Google Scholar 

  29. Byfield, F. J., Reen, R. K., Shentu, T. P., Levitan, I., & Gooch, K. J. (2009). Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. Journal of Biomechanics, 42, 1114–1119.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Azeloglu, E. U., & Costa, K. D. (2010). Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy. American Journal of Physiology-Heart and Circulatory Physiology, 298, H853–H860.

    Article  CAS  PubMed  Google Scholar 

  31. Deitch, S., Gao, B. Z., & Dean, D. (2012). Effect of matrix on cardiomyocyte viscoelastic properties in 2D culture. Molecular and Cellular Biomechanics, 9, 227–249.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the NIH/NHLBI (1R21HL110330-01 to JGJ) and by Texas Children’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Jacot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boothe, S.D., Myers, J.D., Pok, S. et al. The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials. Cell Biochem Biophys 74, 527–535 (2016). https://doi.org/10.1007/s12013-016-0758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0758-1

Keywords

Navigation