Production, Composition, and Application of Coffee and Its Industrial Residues

  • Solange I. MussattoEmail author
  • Ercília M. S. Machado
  • Silvia Martins
  • José A. Teixeira
Review Paper


Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of residues are generated in the coffee industry, which are toxic and represent serious environmental problems. Coffee silverskin and spent coffee grounds are the main coffee industry residues, obtained during the beans roasting, and the process to prepare “instant coffee”, respectively. Recently, some attempts have been made to use these residues for energy or value-added compounds production, as strategies to reduce their toxicity levels, while adding value to them. The present article provides an overview regarding coffee and its main industrial residues. In a first part, the composition of beans and their processing, as well as data about the coffee world production and exportation, are presented. In the sequence, the characteristics, chemical composition, and application of the main coffee industry residues are reviewed. Based on these data, it was concluded that coffee may be considered as one of the most valuable primary products in world trade, crucial to the economies and politics of many developing countries since its cultivation, processing, trading, transportation, and marketing provide employment for millions of people. As a consequence of this big market, the reuse of the main coffee industry residues is of large importance from environmental and economical viewpoints.


Coffee Silverskin Spent grounds Cellulose Hemicellulose 


  1. ABIC (2009). World exportation of coffee. Available at: Accessed 05 March 2010.
  2. ABNT—Associação Brasileira de Normas Técnicas (1987), Resíduos Sólidos—Classificação—NBR 10.004. ABNT, Rio de Janeiro, Brazil.Google Scholar
  3. Andueza, S., Maeztu, L., Dean, B., de Peña, M. P., Bello, J., & Cid, C. (2002). Influence of water pressure on the final quality of arabica espresso coffee. Application of multivariate analysis. Journal of Agricultural and Food Chemistry, 50, 7426–7431.CrossRefGoogle Scholar
  4. Andueza, S., Maeztu, L., Pascual, L., Ibanez, C., de Peña, M. P., & Cid, C. (2003). Influence of extraction temperature on the final quality of espresso coffee. Journal of the Science of Food and Agriculture, 83, 240–248.CrossRefGoogle Scholar
  5. Andueza, S., Vila, M. A., Peña, M. P., & Cid, C. (2007). Influence of coffee/water ratio on the final quality of espresso coffee. Journal of the Science of Food and Agriculture, 87, 586–592.CrossRefGoogle Scholar
  6. Arya, M., & Rao, J. M. (2007). An impression of coffee carbohydrates. Critical Reviews in Food Science and Nutrition, 47, 51–67.CrossRefGoogle Scholar
  7. Baggenstoss, J., Poisson, L., Luethi, R., Perren, R., & Escher, F. (2007). Influence of water quench cooling on degassing and aroma stability of roasted coffee. Journal of Agriculture and Food Chemistry, 55, 6685–6691.CrossRefGoogle Scholar
  8. Belitz, H.-D., Grosch, W., & Schieberle, P. (2009). Coffee, tea, cocoa. In H.-D. Belitz, W. Grosch, & P. Schieberle (Eds.), Food Chemistry (4th ed., pp. 938–951). Leipzig: Springer.Google Scholar
  9. Bell, L. N., Wetzel, C. R., & Grand, A. N. (1996). Caffeine content in coffee as influenced by grinding and brewing techniques. Food Research International, 29, 185–189.CrossRefGoogle Scholar
  10. Borrelli, R. C., Esposito, F., Napolitano, A., Ritieni, A., & Fogliano, V. (2004). Characterization of a new potential functional ingredient: coffee silverskin. Journal of Agricultural and Food Chemistry, 52, 1338–1343.CrossRefGoogle Scholar
  11. Carneiro, L.M., Silva, J.P.A., Mussatto, S.I., Roberto, I.C., & Teixeira, J.A. (2009). Determination of total carbohydrates content in coffee industry residues. In: 8th International Meeting of the Portuguese Carbohydrate Group, GLUPOR, pp 94, 6–10 September 2009, Braga, Portugal (Book of abstracts).Google Scholar
  12. Claude, B. (1979). Étude bibliographique: utilisation dês sous-produits du café. Café Cacao Thé, 23, 146–152.Google Scholar
  13. Comité Français du Café. (1997). Café—a la découverte du café. Paris: Adexquation Publicite.Google Scholar
  14. Couto, R. M., Fernandes, J., Gomes da Silva, M. D. R., & Simões, P. C. (2009). Supercritical fluid extraction of lipids from spent coffee grounds. Journal of Supercritical Fluids, 51, 159–166.CrossRefGoogle Scholar
  15. Cruz, G. M. (1983). Resíduos de cultura e indústria. Informe Agropecuário, 9, 32–37.Google Scholar
  16. Cunha, M. R. (1992). Apêndice estatístico. In E. L. Bacha & R. Greenhill (Eds.), 150 anos de café (pp. 286–388). Rio de Janeiro: Marcellino Martins & E. Johnston.Google Scholar
  17. Czerny, M., & Grosch, W. (2000). Potent odorants of raw Arabica coffee. Their changes during roasting. Journal of Agricultural and Food Chemistry, 48, 868–872.CrossRefGoogle Scholar
  18. Czerny, M., Mayer, F., & Grosch, W. (1999). Sensory study on the character impact odorants of roasted arabica coffee. Journal of Agricultural and Food Chemistry, 47, 695–699.CrossRefGoogle Scholar
  19. Daglia, M., Papetti, A., Gregotti, C., Berté, F., & Gazzani, G. (2000). In vitro antioxidant and ex vivo protective activities of green and roasted coffee. Journal of Agriculture and Food Chemistry, 48, 1449–1454.CrossRefGoogle Scholar
  20. Dutra, E. R., Oliveira, L. S., Franca, A. S., Ferraz, V. P., & Afonso, R. J. C. (2001). A preliminary study on the feasibility of using the composition of coffee roasting exhaust gas for the determination of the degree of roast. Journal of Food Engineering, 47, 241–246.CrossRefGoogle Scholar
  21. EPA, United States Environmental Protection Agency (2010). Available at: Accessed 13 May 2010.
  22. Etienne, H. (2005). Somatic embryogenesis protocol: coffee (Coffea arabica L. and C. canephora P.). In S. M. Jain & P. K. Gupta (Eds.), Protocol for somatic embryogenesis in woody plant (pp. 167–168). Dordrecht: Springer.CrossRefGoogle Scholar
  23. Feria-Morales, A. M. (2002). Examining the case of green coffee to illustrate the limitations of grading systems/expert tasters in sensory evaluation for quality control. Food Quality and Preference, 13, 355–367.CrossRefGoogle Scholar
  24. Franca, A. S., Mendonça, J. C. F., & Oliveira, S. D. (2005). Composition of green and roasted coffees of different cup qualities. LWT—Food Science and Technology, 38, 709–715.Google Scholar
  25. Franca, A. S., Oliveira, L. S., Oliveira, R. C. S., Agresti, P. C. M., & Augusti, R. (2009a). A preliminary evaluation of the effect of processing temperature on coffee roasting degree assessment. Journal of Food Engineering, 92, 345–352.CrossRefGoogle Scholar
  26. Franca, A. S., Oliveira, L. S., & Ferreira, M. E. (2009b). Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 249, 267–272.CrossRefGoogle Scholar
  27. Franková, A., Drábek, O., Havlík, J., Száková, J., & Vanek, A. (2009). The effect of beverage preparation method on aluminium content in coffee infusions. Journal of Inorganic Biochemistry, 103, 1480–1485.CrossRefGoogle Scholar
  28. Freitas, S.P., Monteiro, P.L. & Lago, R.C.A. (2000). Extração do óleo da borra de café solúvel com etanol comercial. In: I Simpósio de Pesquisa dos Cafés do Brasil, pp 740–743, 26–29 September 2000, Poços de Caldas/MG, Brazil (Book of expanded abstracts).Google Scholar
  29. Fujioka, K., & Shibamoto, T. (2008). Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chemistry, 106, 217–221.CrossRefGoogle Scholar
  30. Ghoreishi, S. M., & Shahrestani, R. G. (2009). Innovative strategies for engineering mannitol production. Trends in Food Science and Technology, 20, 263–270.CrossRefGoogle Scholar
  31. Ginz, M., Balzer, H. H., Bradbury, A. G. W., & Maier, H. (2000). Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. European Food Research and Technology, 211, 404–410.CrossRefGoogle Scholar
  32. Givens, D. I., & Barber, W. P. (1986). In vivo evaluation of spent coffee grounds as a ruminant feed. Agricultural Wastes, 18, 69–72.CrossRefGoogle Scholar
  33. Gonzalez-Rios, O., Suarez-Quiroza, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., et al. (2007a). Impact of “ecological” post-harvest processing on coffee aroma: I. Green coffee. Journal of Food Composition and Analysis, 20, 289–296.CrossRefGoogle Scholar
  34. Gonzalez-Rios, O., Suarez-Quiroza, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., et al. (2007b). Impact of “ecological” post-harvest processing on coffee aroma: II. Roasted coffee. Journal of Food Composition and Analysis, 20, 297–307.CrossRefGoogle Scholar
  35. Grembecka, M., Malinowska, E., & Szefer, P. (2007). Differentiation of market coffee and its infusions in view of their mineral composition. Science of the Total Environment, 383, 59–69.CrossRefGoogle Scholar
  36. Hernández, J. A., Heyd, B., & Trystram, G. (2008). On-line assessment of brightness and surface kinetics during coffee roasting. Journal of Food Engineering, 87, 314–322.CrossRefGoogle Scholar
  37. Huang, R., Qi, W., Su, R., & He, Z. (2010). Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical Communications, 46, 1115–1117.CrossRefGoogle Scholar
  38. ICO, International Coffee Organization (2010). Available at: Accessed 05 March 2010.
  39. Jorgensen, H., Sanadi, A. R., Felby, C., Lange, N. E. K., Fischer, M., & Ernst, S. (2010). Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake. Applied Biochemistry and Biotechnology, 161, 318–332.CrossRefGoogle Scholar
  40. Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry, 56, 11757–11760.CrossRefGoogle Scholar
  41. Kumazawa, K., & Masuda, H. (2003). Investigation of the change in the flavor of a coffee drink during heat processing. Journal of Agricultural and Food Chemistry, 51, 2674–2678.CrossRefGoogle Scholar
  42. Lago, R.C.A. & Antoniassi, R. (2001). Composição centesimal e de aminoácidos em cafés. In: II Simpósio de Pesquisa dos Cafés do Brasil. Available at: Accessed 02 December 2008.
  43. Leifa, F., Pandey, A., & Soccol, C. R. (2001). Production of Flammulina velutipes on coffee husk and coffee spent-ground. Brazilian Archives of Biology and Technology, 44, 205–212.CrossRefGoogle Scholar
  44. Lima, D. R. (2003). Café e Saúde: Manual de Farmacologia Clínica, Terapeutica e Toxicologia. Rio de Janeiro: Medsi Editora.Google Scholar
  45. Machado, E.S.M. (2009). Reaproveitamento de resíduos da indústria do café como matéria-prima para a produção de etanol. MSc thesis, Department of Biological Engineering, University of Minho, Braga, Portugal.Google Scholar
  46. Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E., & Mussatto, S. I. (2010). An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology and Biotechnology, 85, 1092–1098.CrossRefGoogle Scholar
  47. Miranda, M. Z., Grossmann, M. V. E., & Nabeshima, E. H. (1994). Utilization of brewers’ spent grain for the production of snacks with fiber. 1. Physicochemical characteristics. Brazilian Archives of Biology and Technology, 37, 483–493.Google Scholar
  48. Murthy, P.S. & Naidu, M.M. (2010a). Production and application of xylanase from Penicillium sp. Utilizing coffee by-products. Food Bioprocess Technology, doi: 10.1007/s11947-010-0331-7.
  49. Murthy, P.S. & Naidu, M.M. (2010b). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, doi: 10.1007/s11947-010-0363-z.
  50. Murthy, P. S., Naidu, M. M., & Srinivas, P. (2009). Production of α-amylase under solid-state fermentation utilizing coffee waste. Journal of Chemical Technology and Biotechnology, 84, 1246–1249.CrossRefGoogle Scholar
  51. Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93, 1–10.CrossRefGoogle Scholar
  52. Mussatto, S. I., & Roberto, I. C. (2005). Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. Journal of the Science of Food and Agriculture, 85, 2453–2460.CrossRefGoogle Scholar
  53. Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53, 154–157.CrossRefGoogle Scholar
  54. Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewer’s spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43, 1–14.CrossRefGoogle Scholar
  55. Mussatto, S. I., Dragone, G., Fernandes, M., Milagres, A. M. F., & Roberto, I. C. (2008a). The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer’s spent grain. Cellulose, 15, 711–721.CrossRefGoogle Scholar
  56. Mussatto, S. I., Fernandes, M., Mancilha, I. M., & Roberto, I. C. (2008b). Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochemical Engineering Journal, 40, 437–444.CrossRefGoogle Scholar
  57. Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83, 368–374.CrossRefGoogle Scholar
  58. Nabais, J. M. V., Nunes, P., Carrott, P. J. M., Carrott, M. R., García, A. M., & Díez, M. A. D. (2008). Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Processing Technology, 89, 262–268.CrossRefGoogle Scholar
  59. Navarini, L., & Rivetti, D. (2010). Water quality for Espresso coffee. Food Chemistry, 122, 424–428.CrossRefGoogle Scholar
  60. Navarini, L., Nobile, E., Pinto, F., Scheri, A., & Suggi-Liverani, F. (2009). Experimental investigation of steam pressure coffee extraction in a stove-top coffee maker. Applied Thermal Engineering, 29, 998–1004.CrossRefGoogle Scholar
  61. Neves, C. (1974). A estória do café (p. 52). Rio de Janeiro: Instituto Brasileiro do Café.Google Scholar
  62. Oliveira, A. L., Cabral, F. A., Eberlin, M. N., & Cordello, H. M. A. B. (2009). Sensory evaluation of black instant coffee beverage with some volatile compounds present in aromatic oil from roasted coffee. Ciência e Tecnologia de Alimentos, 29, 76–80.CrossRefGoogle Scholar
  63. Pan, C., Zhang, S., Fan, Y., & Hou, H. (2010). Bioconversion of corncob to hydrogen using anaerobic mixed microflora. International Journal of Hydrogen Energy, 35, 2663–2669.CrossRefGoogle Scholar
  64. Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, 6, 153–162.CrossRefGoogle Scholar
  65. Parras, P., Martínez-Tomé, M., Jiménez, A. M., & Murcia, M. A. (2007). Antioxidant capacity of coffees of several origins brewed following three different procedures. Food Chemistry, 102, 582–592.CrossRefGoogle Scholar
  66. Pérez-Martínez, M., Caemmerer, B., de Peña, M. P., Cid, C., & Kroh, L. W. (2010). Influence of brewing method and acidity regulators on the antioxidant capacity of coffee brews. Journal of Agricultural and Food Chemistry, 58, 2958–2965.CrossRefGoogle Scholar
  67. Petracco, M. (2001). Beverage preparation: brewing trends for the new millennium. In R. Clarke & O. Vitzthum (Eds.), Coffee: Recent Developments. Oxford: Blackwell Science.Google Scholar
  68. Pfluger, R. A. (1975). Soluble coffee processing. In C. L. Mantell (Ed.), Solid wastes: origin, collection, processing, and disposal. New York: Wiley.Google Scholar
  69. Qureshi, N., & Ezeji, T. C. (2008). Butanol "a superior biofuel" production from agricultural residues (renewable biomass): recent progress in technology. Biofuel, Bioproducts and Biorefining, 2, 319–330.CrossRefGoogle Scholar
  70. Ramalakshmi, K., Rao, J. M., Takano-Ishikawa, Y., & Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115, 79–85.CrossRefGoogle Scholar
  71. Ratnayake, W. M. N., Hollywood, R., O’Grady, E., & Stavric, B. (1993). Lipid content and composition of coffee brews prepared by different methods. Food and Chemical Toxicology, 31, 263–269.CrossRefGoogle Scholar
  72. Rawel, H. M., & Kulling, S. E. (2007). Nutritional contribution of coffee, cacao and tea phenolics to human health. Journal of Consumer Protection and Food Safety, 2, 399–406.Google Scholar
  73. Ren, N., Wang, A., Cao, G., Xu, J., & Gao, L. (2009). Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnology Advances, 27, 1051–1060.CrossRefGoogle Scholar
  74. Rinaldi, R., & Schüth, F. (2009). Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem, 2, 1096–1107.CrossRefGoogle Scholar
  75. Sacchetti, G., Di Mattia, C., Pittia, P., & Mastrocola, D. (2009). Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. Journal of Food Engineering, 90, 74–80.CrossRefGoogle Scholar
  76. Saenger, M., Hartge, E.-U., Werther, J., Ogada, T., & Siagi, Z. (2001). Combustion of coffee husks. Renewable Energy, 23, 103–121.CrossRefGoogle Scholar
  77. Saha, B. C., & Bothast, R. J. (1996). Production of L-arabitol from L-arabinose by Candida entomaea and Pichia guilliermondii. Applied Microbiology and Biotechnology, 45, 299–306.CrossRefGoogle Scholar
  78. Sampaio, A.R.M. (2010). Desenvolvimento de tecnologias para produção de etanol a partir do hidrolisado da borra de café. MSc thesis, Department of Biological Engineering, University of Minho, Braga, Portugal.Google Scholar
  79. Santos, E. J., & Oliveira, E. (2001). Determination of mineral nutrients and toxic elements in Brazilian soluble coffee by ICP-AES. Journal of Food Composition and Analysis, 14, 523–531.CrossRefGoogle Scholar
  80. Sendzikiene, E., Makareviciene, V., Janulis, P., & Kitrys, S. (2004). Kinetics of free fatty acids esterification with methanol in the production of biodiesel fuel. European Journal of Lipid Science and Technology, 106, 831–836.CrossRefGoogle Scholar
  81. Shen, J., & Agblevor, F. A. (2010). Modeling semi-simultaneous saccharification and fermentation of ethanol production from cellulose. Biomass and Bioenergy, 34, 1098–1107.CrossRefGoogle Scholar
  82. Silva, M. A., Nebra, S. A., Machado Silva, M. J., & Sanchez, C. G. (1998). The use of biomass residues in the Brazilian soluble coffee industry. Biomass and Bioenergy, 14, 457–467.CrossRefGoogle Scholar
  83. Silva, J. P. A., Mussatto, S. I., & Roberto, I. C. (2010). The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Applied Biochemistry and Biotechnology, 162, 1306–1315.CrossRefGoogle Scholar
  84. Sobésa Café (2008). Available at: Accessed 05 March 2010.
  85. Taherzadeh, M. J., Adler, L., & Lidén, G. (2002). Strategies for enhancing fermentative production of glycerol—a review. Enzyme and Microbial Technology, 31, 53–66.CrossRefGoogle Scholar
  86. Taunay, A.E. (1939). História do café no Brasil. No Brasil Imperial 1822–1872, tomo I, v. 5. Departamento Nacional do Café, Rio de Janeiro, Brazil.Google Scholar
  87. Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., & Tanada, S. (2005). Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science, 281, 56–61.CrossRefGoogle Scholar
  88. Townsley, P. M. (1979). Preparation of commercial products from brewer’s waste grain and trub. MBAA Technical Quarterly, 16, 130–134.Google Scholar
  89. Trugo, L. (2003). Coffee. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopedia of Food Sciences and Nutrition (2nd ed.). London: Academic.Google Scholar
  90. Trugo, L. C., & Macrae, R. (1984). A study of the effect of roasting on the chlorogenic acid composition of coffee using HPLC. Food Chemistry, 15, 219–227.CrossRefGoogle Scholar
  91. Wang, S.-C., & Huffman, J. B. (1981). Botanochemicals: supplements to petrochemicals. Economic Botany, 35, 369–382.CrossRefGoogle Scholar
  92. Wang, D., Sakoda, A., & Suzuki, M. (2001). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresource Technology, 78, 293–300.CrossRefGoogle Scholar
  93. Zhuang, X. L., Zhang, H. X., Yang, J. Z., & Qi, H. Y. (2001). Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresource Technology, 79, 63–66.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Solange I. Mussatto
    • 1
    Email author
  • Ercília M. S. Machado
    • 1
  • Silvia Martins
    • 1
  • José A. Teixeira
    • 1
  1. 1.IBB—Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations