Advertisement

Current Diabetes Reports

, 17:123 | Cite as

Health Benefits of Fasting and Caloric Restriction

  • Saeid Golbidi
  • Andreas Daiber
  • Bato Korac
  • Huige Li
  • M. Faadiel Essop
  • Ismail Laher
Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (B Conway and H Keenan, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Abstract

Purpose of Review

Obesity and obesity-related diseases, largely resulting from urbanization and behavioral changes, are now of global importance. Energy restriction, though, is associated with health improvements and increased longevity. We review some important mechanisms related to calorie limitation aimed at controlling of metabolic diseases, particularly diabetes.

Recent Findings

Calorie restriction triggers a complex series of intricate events, including activation of cellular stress response elements, improved autophagy, modification of apoptosis, and alteration in hormonal balance. Intermittent fasting is not only more acceptable to patients, but it also prevents some of the adverse effects of chronic calorie restriction, especially malnutrition.

Summary

There are many somatic and potentially psychologic benefits of fasting or intermittent calorie restriction. However, some behavioral modifications related to abstinence of binge eating following a fasting period are crucial in maintaining the desired favorable outcomes.

Keywords

Calorie restriction Diabetes Adipose tissue Oxidative stress 

Notes

Compliance with Ethical Standards

Conflict of Interest

Saeid Golbidi, Andreas Daiber, Bato Korac, Huige Li, M. Faadiel Essop, and Ismail Laher declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Badran M, Laher I. Obesity in arabic-speaking countries. J Obes. 2011;2011:686430.  https://doi.org/10.1155/2011/686430.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Badran M, Laher I. Type II diabetes mellitus in Arabic-speaking countries. Int J Endocrinol. 2012;2012:902873.  https://doi.org/10.1155/2012/902873.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    • Abuyassin B, Laher I. Diabetes epidemic sweeping the Arab world. World J Diabetes. 2016;7:165–74.  https://doi.org/10.4239/wjd.v7.i8.165. This review article gives an overview of epidemiologic aspects of diabetes, particularly in respect to unhealthy lifestyle, in the Middle East. PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Abuyassin B, Laher I. Obesity-linked diabetes in the Arab world: a review. East Mediterr Health J. 2015;21:42039.CrossRefGoogle Scholar
  5. 5.
    Trepanowski JF, Bloomer RJ. The impact of religious fasting on human health. Nutr J. 2010;9:57.  https://doi.org/10.1186/1475-2891-9-57.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Persynaki A, Karras S, Pichard C. Unraveling the metabolic health benefits of fasting related to religious beliefs: a narrative review. Nutrition. 2017;35:14–20.  https://doi.org/10.1016/j.nut.2016.10.005.PubMedCrossRefGoogle Scholar
  7. 7.
    el Ati J, Beji C, Danguir J. Increased fat oxidation during Ramadan fasting in healthy women: an adaptative mechanism for body-weight maintenance. Am J Clin Nutr. 1995;62:302–7.PubMedGoogle Scholar
  8. 8.
    Al Suwaidi J, Bener A, Hajar HA, Numan MT. Does hospitalization for congestive heart failure occur more frequently in Ramadan: a population-based study [1991-2001]. Int J Cardiol. 2004;96:217–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Al Suwaidi J, Bener A, Suliman A, Hajar R, Salam AM, Numan MT, Al Binali HA. Al Suwaidi J, Bener A, Suliman A, Hajar R, Salam AM, Numan MT, Al Binali HA. A population based study of Ramadan fasting and acute coronary syndromes. Heart. 2004; 90: 695–696.Google Scholar
  10. 10.
    Al Suwaidi J, Bener A, Gehani AA, Behair S, Al Mohanadi D, Salam A, et al. Does the circadian pattern for acute cardiac events presentation vary with fasting? J Postgrad Med. 2006;52:30–3.PubMedGoogle Scholar
  11. 11.
    Bahijri S, Borai A, Ajabnoor G, Abdul Khaliq A, AlQassas I, Al-Shehri D, et al. Relative metabolic stability, but disrupted circadian cortisol secretion during the fasting month of Ramadan. PLoS One. 2013;8:e60917.  https://doi.org/10.1371/journal.pone.0060917.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Charmandari ETC, Chrousos GP. Neuroendocrinology of stress. Annu Rev Physiol. 2005;67:259–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Pervanidou P, Chrousos GP. Metabolic consequences of stress during childhood and adolescence. Metabolism. 2012;61:611–9.  https://doi.org/10.1016/j.metabol.2011.10.005.PubMedCrossRefGoogle Scholar
  14. 14.
    Maislos M, Abou-Rabiah Y, Zuili I, Iordash S, Shany S. Gorging and plasma HDL-cholesterol—the Ramadan model. Eur J Clin Nutr. 1998;52:127–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Koh HK, Joossens LX, Connolly GN. Making smoking history worldwide. N Engl J Med. 2007;356:1496–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Ramahi I, Seidenberg AB, Kennedy RD, Rees VW. Secondhand smoke emission levels in enclosed public places during Ramadan. Eur J Public Health 2013; 789–91. doi:  https://doi.org/10.1093/eurpub/cks119.
  17. 17.
    Thomas JA 2nd, Antonelli JA, Lloyd JC, Masko EM, Poulton SH, Phillips TE, et al. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model. Prostate Cancer Prostatic Dis. 2010;13:350–5.  https://doi.org/10.1038/pcan.2010.24.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Buschemeyer WC 3rd, Klink JC, Mavropoulos JC, Poulton SH, Demark-Wahnefried W, Hursting SD, et al. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice. Prostate. 2010;70:1037–43.  https://doi.org/10.1002/pros.21136.PubMedCrossRefGoogle Scholar
  20. 20.
    Ikeno Y, Lew CM, Cortez LA, Webb CR, Lee S, Hubbard GB. Do long-lived mutant and calorie-restricted mice share common anti-aging mechanisms? A pathological point of view. Age (Dordr). 2006;28:163–71.  https://doi.org/10.1007/s11357-006-9007-7.CrossRefGoogle Scholar
  21. 21.
    Maeda H, Gleiser CA, Masoro EJ, Murata I, McMahan CA, Yu BP. Nutritional influences on aging of Fischer 344 rats: II. Pathol J Gerontol. 1985;40:671–88.CrossRefGoogle Scholar
  22. 22.
    Cava E, Fontana L. Will calorie restriction work in humans? Aging (Albany NY). 2013;5:507–14.CrossRefGoogle Scholar
  23. 23.
    Mercken EM, Crosby SD, Lamming DW, JeBailey L, Krzysik-Walker S, Villareal DT, et al. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12:645–51.  https://doi.org/10.1111/acel.12088.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006;295:1539–48.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328  https://doi.org/10.1126/science.
  26. 26.
    Mattson MP. Challenging oneself intermittently to improve health. Dose Response. 2014;12:600–18.  https://doi.org/10.2203/dose-response.14-028.Mattson. eCollection 2014PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Adrie C, Richter C, Bachelet M, Banzet N, François D, Dinh-Xuan AT, et al. Contrasting effects of NO and peroxynitrites on HSP70 expression and apoptosis in human monocytes. Am J Physiol Cell Physiol. 2000;279:C452–60.PubMedGoogle Scholar
  28. 28.
    Guttman SD, Glover CV, Allis CD, Gorovsky MA. Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis. Cell. 1980;22:299–307.PubMedCrossRefGoogle Scholar
  29. 29.
    Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246:382–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Sciandra JJ, Subjeck JR. The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J Biol Chem. 1983;258:12091–3.PubMedGoogle Scholar
  31. 31.
    Morton JP, Kayani AC, McArdle A, Drust B. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 2009;39:643–62.  https://doi.org/10.2165/00007256-200939080-00003.PubMedCrossRefGoogle Scholar
  32. 32.
    Geiger PC, Gupte AA. Heat shock proteins are important mediators of skeletal muscle insulin sensitivity. Exerc Sport Sci Rev. 2011;39:34–42.  https://doi.org/10.1097/JES.0b013e318201f236.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L, et al. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes. 2002;51:1102–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci. 2009;10:85–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bijur GN, Jope RS. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem. 2000;75:2401–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, et al. HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2008;105:1739–44.  https://doi.org/10.1073/pnas.0705799105.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Speakman JR, Mitchell SE. Caloric restriction. Mol Asp Med. 2011;32:159–221.  https://doi.org/10.1016/j.mam.2011.07.001.CrossRefGoogle Scholar
  38. 38.
    Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 2010;67:41–52.  https://doi.org/10.1002/ana.21798.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 2010;1:e10.  https://doi.org/10.1038/cddis.2009.8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110:911–916. e12.  https://doi.org/10.1016/j.jada.2010.03.018.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, et al. Orally absorbed reactive glycation products [glycotoxins] : an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94:6474–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol. 2008;153:6–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170:1893–902.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Stern D, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation end-products: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev. 2002;54:1615–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP. Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci. 2005;1043:676–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Li J, Schmidt AM. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem. 1997;272:16498–506.PubMedCrossRefGoogle Scholar
  47. 47.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009;20:742–52.  https://doi.org/10.1681/ASN.2008050514.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280:E685–94.PubMedGoogle Scholar
  50. 50.
    Gugliucci A, Kotani K, Taing J, Matsuoka Y, Sano Y, Yoshimura M, et al. Short-term low calorie diet intervention reduces serum advanced glycation end products in healthy overweight or obese adults. Ann Nutr Metab. 2009;54:197–201.  https://doi.org/10.1159/000217817.PubMedCrossRefGoogle Scholar
  51. 51.
    Iwashige K, Kouda K, Kouda M, Horiuchi K, Takahashi M, Nagano A, et al. Calorie restricted diet and urinary pentosidine in patients with rheumatoid arthritis. J Physiol Anthropol Appl Hum Sci. 2004;23:19–24.CrossRefGoogle Scholar
  52. 52.
    Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron JC, et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes. 2003;52:268–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Wan R, Ahmet I, Brown M, Cheng A, Kamimura N, Talan M, et al. Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem. 2010;21:413–7.  https://doi.org/10.1016/j.jnutbio.2009.01.020.PubMedCrossRefGoogle Scholar
  54. 54.
    Mazaki-Tovi S, Kanety H, Sivan E. Adiponectin and human pregnancy. Curr Diab Rep. 2005;5:278–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Okamoto M, Ohara-Imaizumi M, Kubota N, Hashimoto S, Eto K, Kanno T, et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia. 2008;51:827–35.  https://doi.org/10.1007/s00125-008-0944-9.PubMedCrossRefGoogle Scholar
  56. 56.
    Musso G, Gambino R, Biroli G, Carello M, Fagà E, Pacini G, et al. Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic Beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2005;100:2438–46.PubMedCrossRefGoogle Scholar
  57. 57.
    Retnakaran R, Hanley AJ, Raif N, Hirning CR, Connelly PW, Sermer M, et al. Adiponectin and beta cell dysfunction in gestational diabetes: pathophysiological implications. Diabetologia. 2005;48:993–1001.PubMedCrossRefGoogle Scholar
  58. 58.
    Cui J, Panse S, Falkner B. The role of adiponectin in metabolic and vascular disease: a review. Clin Nephrol. 2011;75:26–33.PubMedGoogle Scholar
  59. 59.
    Bik W, Baranowska-Bik A, Wolinska-Witort E, Martynska L, Chmielowska M, Szybinska A, et al. The relationship between adiponectin levels and metabolic status in centenarian, early elderly, young and obese women. Neuro Endocrinol Lett. 2006;27:493–500.PubMedGoogle Scholar
  60. 60.
    Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Scherer PE, et al. Adiponectin levels and genotype: a potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci. 2008;63:447–53.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Klöting N, Blüher M. Extended longevity and insulin signaling in adipose tissue. Exp Gerontol. 2005;40:878–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, et al. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol. 2009;44:26–33.  https://doi.org/10.1016/j.exger.2008.05.014.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang Z, Al-Regaiey KA, Masternak MM, Bartke A. Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J Gerontol A Biol Sci Med Sci. 2006;61:323–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Qiao L, Lee B, Kinney B, Yoo HS, Shao J. Energy intake and adiponectin gene expression. Am J Physiol Endocrinol Metab. 2011;300:E809–16.  https://doi.org/10.1152/ajpendo.00004.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nakamura T, Funayama H, Kubo N, Yasu T, Kawakami M, Saito M, et al. Association of hyperadiponectinemia with severity of ventricular dysfunction in congestive heart failure. Circ J. 2006;70:1557–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Nelson DL, Cox MM. Lehninger principles of biochemistry. 6th ed. New York: W.H. Freeman and Company; 2013.Google Scholar
  67. 67.
    Voet D, Voet JG. Biochemistry. 4th ed. Chichester: Wiley; 2011.Google Scholar
  68. 68.
    Weyer C, Foley EJ, Bogardus C, Tataranni AP, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia. 2000;43:1498–506.PubMedCrossRefGoogle Scholar
  69. 69.
    Varady KA, Hellerstein MK. Do calorie restriction or alternate-day fasting regimens modulate adipose tissue physiology in a way that reduces chronic disease risk? Nutr Rev. 2008;66:333–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Varady KA, Roohk DJ, Loe YC, McEvoy-Hein BK, Hellerstein MK. Effects of modified alternate-day fasting regimens on adipocyte size, triglyceride metabolism and plasma adiponectin levels in mice. J Lipid Res. 2007;48:2212–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Tzur R, Rose-Kahn G, Adler HJ, Bar-Tana J. Hypolipidemic, antiobesity, and hypoglycemic-hypoinsulinemic effects of beta,beta’-methyl-substituted hexadecanedioic acid in sand rats. Diabetes. 1988;37:1618–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Varady AK, Hellerstein KM. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007;86:7–13.PubMedGoogle Scholar
  73. 73.
    Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes. 2011;35:714–27.CrossRefGoogle Scholar
  74. 74.
    •• Ding H, Zheng S, Garcia-Ruiz D, Hou D, Wei Z, Liao Z, et al. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat Commun. 2016;  https://doi.org/10.1038/ncomms11533. This study provides a novel view of adipose tissue metabolism during fasting and the importance of subcutaneous fat in energy balance.
  75. 75.
    • Fabbiano S, Suárez-Zamorano N, Rigo D, Veyrat-Durebex C, Stevanovic Dokic A, Colin DJ, et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 2016;24:434–46.  https://doi.org/10.1016/j.cmet.2016.07.023. An investigation of the metabolism of adipose tissue and its potential for transformation during periods of energy restriction PubMedCrossRefGoogle Scholar
  76. 76.
    Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6:195–213.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids. 2010;39:349–57.PubMedCrossRefGoogle Scholar
  78. 78.
    Otasevic V, Korac A, Buzadzic B, Stančić A, Janković A. Korać B. Nitric oxide and thermogenesis-challenge in molecular cell physiology. Front Biosci 2011; 3: 1180–1195.Google Scholar
  79. 79.
    Stanford IK, Middelbeek JWR, Goodyear JL. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes. 2015;  https://doi.org/10.2337/db15-0227.
  80. 80.
    Romaniello, J: IF 201: a look at four popular intermittent fasting protocols. A breakdown of the most popular IF variations. URL romanfitnesssystems.com/articles/intermittent-fasting-201/.
  81. 81.
    Barnosky AR, Hoddy KK, Unterman TG, Varady KA. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res. 2014;164:302–11.  https://doi.org/10.1016/j.trsl.2014.05.013.PubMedCrossRefGoogle Scholar
  82. 82.
    Varady KA. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev. 2011;12:e593–601.  https://doi.org/10.1111/j.1467-789X.2011.00873.x.PubMedCrossRefGoogle Scholar
  83. 83.
    Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A. 2003;100:6216–20.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–4.  https://doi.org/10.1126/science.1173635.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29:2102–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18:1657–69.PubMedCrossRefGoogle Scholar
  87. 87.
    Eshghinia S, Mohammadzadeh F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J Diabetes Metab Disord. 2013;12:1–4.CrossRefGoogle Scholar
  88. 88.
    Klempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J. 2012;11:98.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. 2009;90:1138–43.PubMedCrossRefGoogle Scholar
  90. 90.
    Klempel MC, Kroeger CM, Varady KA. Alternate day fasting [ADF] with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metabolism. 2013;62:137–43.PubMedCrossRefGoogle Scholar
  91. 91.
    Heilbronn LK, Smith SR, Martin CK, Anton SD, Ravussin E. Alternate-day fasting in non-obese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81:69–73.PubMedGoogle Scholar
  92. 92.
    M'guil M, Ragala MA, El Guessabi L, Fellat S, Chraibi A, Chabraoui L, et al. Is Ramadan fasting safe in type 2 diabetic patients in view of the lack of significant effect of fasting on clinical and biochemical parameters, blood pressure, and glycemic control ? Clin Exp Hypertens. 2008;30:339–57.  https://doi.org/10.1080/10641960802272442.PubMedCrossRefGoogle Scholar
  93. 93.
    Deng X, Cheng J, Zhang Y, Li N, Chen L. Effects of caloric restriction on SIRT1 expression and apoptosis of islet beta cells in type 2 diabetic rats. Acta Diabetol. 2010;47(suppl 1):177–85.  https://doi.org/10.1007/s00592-009-0159-7.PubMedCrossRefGoogle Scholar
  94. 94.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6:759–67.PubMedCrossRefGoogle Scholar
  96. 96.
    Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One. 2008;3:e1759.  https://doi.org/10.1371/journal.pone.0001759.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, et al. CALERIE Pennington team. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4:e76.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Golbidi S, Badran M, Laher I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp Diabetes Res. 2012;2012:941868.  https://doi.org/10.1155/2012/941868.PubMedCrossRefGoogle Scholar
  99. 99.
    Krumholz HM, Currie PM, Riegel B, Phillips CO, Peterson ED, Smith R, et al. A taxonomy for disease management: a scientific statement from the American Heart Association disease management taxonomy writing group. Circulation. 2006;114:1432–45.PubMedCrossRefGoogle Scholar
  100. 100.
    Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89:27–71.  https://doi.org/10.1152/physrev.00014.2008.PubMedCrossRefGoogle Scholar
  101. 101.
    Yung LM, Leung FP, Yao X, Chen ZY, Huang Y. Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets. 2006;6:1–19.PubMedCrossRefGoogle Scholar
  102. 102.
    Meydani M, Das S, Band M, Epstein S, Roberts S. The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: results from the CALERIE trial of human caloric restriction. J Nutr Health Aging. 2011;15:456–60.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Buchowski MS, Hongu N, Acra S, Wang L, Warolin J, Roberts LJ 2nd. Effect of modest caloric restriction on oxidative stress in women, a randomized trial. PLoS One. 2012;7:e47079.  https://doi.org/10.1371/journal.pone.0047079.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sung MM, Dyck JR. Age-related cardiovascular disease and the beneficial effects of calorie restriction. Heart Fail Rev. 2012;17:707–19.  https://doi.org/10.1007/s10741-011-9293-8.PubMedCrossRefGoogle Scholar
  105. 105.
    Han X, Ren J. Caloric restriction and heart function: is there a sensible link? Acta Pharma. 2010;31:1111–7.CrossRefGoogle Scholar
  106. 106.
    Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2007;104:14855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Seymour EM, Parikh RV, Singer AA, Bolling SF. Moderate calorie restriction improves cardiac remodeling and diastolic dysfunction in the Dahl-SS rat. J Mol Cell Cardiol. 2006;41:661–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Zotova AV, Desyatova IE, Bychenko SM, Sivertseva SA, Okonechnikova NS, Murav'ev SA. The efficacy of low calorie diet therapy in patients with arterial hypertension and chronic cerebral ischemia. Zh Nevrol Psikhiatr Im S S Korsakova. 2015;115:25–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide [NO] and its pathophysiologic regulation. Vasc Pharmacol. 2008;49:134–40.CrossRefGoogle Scholar
  110. 110.
    Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases—the role of oxidative stress and inflammation. Curr Pharm Des. 2014;20:3579–94.PubMedCrossRefGoogle Scholar
  111. 111.
    Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16:129–37.PubMedCrossRefGoogle Scholar
  112. 112.
    Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol. 2011;301:H1205–19.  https://doi.org/10.1152/ajpheart.00685.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr. 2015;102:464–70.  https://doi.org/10.3945/ajcn.115.109553.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Saeid Golbidi
    • 1
  • Andreas Daiber
    • 2
  • Bato Korac
    • 3
  • Huige Li
    • 4
  • M. Faadiel Essop
    • 5
  • Ismail Laher
    • 1
  1. 1.Faculty of Medicine, Department of Pharmacology and TherapeuticsThe University of British ColumbiaVancouverCanada
  2. 2.Center of Cardiology, Cardiology 1Medical Center of the Johannes Gutenberg UniversityMainzGermany
  3. 3.Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
  4. 4.Department of PharmacologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
  5. 5.Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations