Skip to main content
Log in

The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: Results from the calerie trial of human caloric restriction

  • Caloric Restriction and Glycemic Load on Measures of Oxidative Stress and Antioxidants
  • Published:
The journal of nutrition, health & aging

Abstract

Decreasing oxidative stress and increasing antioxidant defense has been hypothesized as one mechanism by which caloric restriction (CR) increases longevity in animals. A total of 46 moderately overweight volunteers (BMI: 252-30 kg/m2), ages 20–42 yr were randomized to either high glycemic (HG) or low glycemic (LG) dietary load CR regimen at either 10% (n=12) or 30% (n=34) of basal caloric intake. All food was provided to participants for 6 mo. Overall, after controlling for CR levels and dietary regimen for 6 mo, plasma glutathione peroxidase activity increased (p=0.04) and plasma protein carbonyl levels decreased (p=0.02) and a non-significant decrease in plasma 8-epi-prostaglandin F2α level was observed (p=0.09). No significant change was observed in other plasma antioxidants such as superoxide dismutase and catalase. These findings indicate that short term CR (10% or 30%) in moderately overweight subjects modulates some but not all measures of antioxidant defense and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, B.P., Modulation of oxidative stress as a means of life prolonging action of dietary restriction., in Oxidative stress and aging., R.G. Cuttler, et al., Editors. 1995, Birkhauser Verlag: Basel. p. 331–342.

    Google Scholar 

  2. Wanagat, J., D.B. Allison and R. Weindruch, Caloric intake and aging: mechanisms in rodents and a study in nonhuman primates. Toxicol Sci, 1999; 52S: 35–40.

    Google Scholar 

  3. Merry, B.J., Calorie restriction and age-related oxidative stress. Annal NY Acad Sci, 2000; 908: 180–198.

    Article  CAS  Google Scholar 

  4. Narasimhan, S.D., K. Yen and H.A. Tissenbaum, Converging pathways in lifespan regulation. Curr Biol, 2009; 19: R657–R666.

    Article  PubMed  CAS  Google Scholar 

  5. Morrow, J.D., The isoprostanes: their quantification as an index of oxidant stress status in vivo.. Drug Metab Rev 2000; 32: 377–385.

    Article  PubMed  CAS  Google Scholar 

  6. Greco, A., M. L. and G. Levi, Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochem Res, 2000; 25: 1357–1364.

    Article  PubMed  CAS  Google Scholar 

  7. Obata, T., K. Tomaru, T. Nagakura, et al., Smoking and oxidant stress: assay of isoprostane in human urine by gas chromatography-mass spectrometry. J Chromato. B, Biomed Sci Applic, 2000; 746: 11–15.

    Article  CAS  Google Scholar 

  8. Rall, L.C., R. Roubenoff, S.N. Meydani, et al., Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a marker of oxidative stress in rheumatoid arthritis and aging: effect of progressive resistance training. J Nutr Biochem, 2000; 11: 581–584.

    Article  PubMed  CAS  Google Scholar 

  9. Sohal, R.S., S. Agarwal, M. Candas, et al., Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Aging Develop, 1994; 76: 215–224.

    Article  CAS  Google Scholar 

  10. Ames, B.N. and M.K. Shigenaga, Oxidants are a major contributor to aging. Annals of the New York Academy of Sciences, 1992; 663: 85–96.

    Article  PubMed  CAS  Google Scholar 

  11. Kaneko, T., S. Tahara and M. Matsuo, Retarding effect of dietary restriction on the accumulation of 8-hydroxy-2′-deoxyguanosine in organs of Fischer 344 rats during aging. Free Rad. Biol. Med, 1997; 23: 76–81.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, C.D., J.M. Carney, P.M. Starke-Reed, et al., Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 1991; 88: 10540–10543.

    Article  PubMed  CAS  Google Scholar 

  13. Sohal, R.S., S.A. Gerwal, A. Dubey and W.C. Orr, Protein oxidative damage is associated with life expectancy of houseflies. Proc. Natl. Acad. Sci. USA, 1993; 90: 7255–7259.

    Article  PubMed  CAS  Google Scholar 

  14. Mecocci, P., G. Fano, S. Fulle, et al., Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 1999; 26: 303–308.

    Article  PubMed  CAS  Google Scholar 

  15. Dubey, A., M.J. Forster, H. Lal and R.S. Sohal, Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral function of the mouse. Arch. Biochem. Biophys., 1996; 333: 189–197.

    Article  PubMed  CAS  Google Scholar 

  16. Aksenova, M.V., M.Y. Aksenov, J.M. Carney and D.A. Butterfield, Protein oxidation and enzyme activity decline in old brown Norway rats are reduced by dietary restriction. Mech Ageing Dev, 1998; 100: 157–168.

    Article  PubMed  CAS  Google Scholar 

  17. Tian, L., i.Q. Ca, R. Bowen and H. Wei, Effect of calorie restriction on age-related oxidative modifications of macromolecules and lymphocyte-proliferation in rats. Free Radic Biol Med, 1995; 19: 859–865.

    Article  PubMed  CAS  Google Scholar 

  18. Koizumi, A., R. Weindruch and R.L. Walford, Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J. Nutr., 1987; 117: 361–367.

    PubMed  CAS  Google Scholar 

  19. Rao, G., E. Xia, M.J. Nadakavukaren and A. Richardson, Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. J. Nutr., 1990; 120: 602–609.

    PubMed  CAS  Google Scholar 

  20. Gomi, F. and M. Matsuo, Effects of aging and food restriction on the antioxidant enzyme activity of rat livers. J Gerontol, 1998; 53: B161–B167

    CAS  Google Scholar 

  21. Das, S.K., E. Saltzman, C.H. Gilhooly, et al., Low or moderate dietary energy restriction for long-term weight loss: what works best? Obesity, 2009; 17: 2019–2024.

    Article  PubMed  CAS  Google Scholar 

  22. Das, S.K., C.H. Gilhooly, J.K. Golden, et al., Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am J Clin Nutr, 2007; 84: 1023.

    Google Scholar 

  23. Foster-Powell, K., S.H.A. Holt and J.C. Brand-Miller, International table of glycemic index and glycemic load values. Am J Clin Nutr, 2002; 76: 5–56.

    PubMed  CAS  Google Scholar 

  24. Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000; 408: 239–247.

    Article  PubMed  CAS  Google Scholar 

  25. Fontana, L., T.E. Meyer, S. Klein and J.O. Holloszy, Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A, 2004; 101: 6659–6663.

    Article  PubMed  CAS  Google Scholar 

  26. Heilbronn, L.K. and E. Ravussin, Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr, 2003; 78: 361–369.

    PubMed  CAS  Google Scholar 

  27. Kagawa, Y., Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med, 1978; 7: 205–217.

    Article  PubMed  CAS  Google Scholar 

  28. Walford, R.L., S.B. Harris and M.W. Gunion, The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci U S A, 1992; 89: 11533–11537.

    Article  PubMed  CAS  Google Scholar 

  29. Walford, R.L., D. Mock, T. MacCallum and J.L. Laseter, Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci, 1999; 52: 61–65.

    PubMed  CAS  Google Scholar 

  30. Walford, R.L., D. Mock, R. Verdery and T. MacCallum, Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci, 2002; 57: B211–B224.

    PubMed  Google Scholar 

  31. Pittas, A.G., S.B. Roberts, S.K. Das, et al., The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss. Obesity, 2006; 14: 2200–2209.

    Article  PubMed  CAS  Google Scholar 

  32. Ungvari, Z., C. Parrado-Fernandez, A. Csiszar and R. de Cabo, Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res, 2008; 102: 519–528.

    Article  PubMed  CAS  Google Scholar 

  33. Nisoli, E., C. Tonello, A. Cardile, et al., Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 2005; 310: 314–317.

    Article  PubMed  CAS  Google Scholar 

  34. Dobashi, K., K. Asayama, T. Nakane, et al., Induction of glutathione peroxidase in response to inactivation by nitric oxide. Free Radic Res, 2001; 35: 319–327.

    Article  PubMed  CAS  Google Scholar 

  35. Dandona, P., P. Mohanty, H. Ghanim, et al., The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab, 2001; 86: 355–362.

    Article  PubMed  CAS  Google Scholar 

  36. Heilbronn, L.K., L. de Jonge, M.I. Frisard, et al., Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA, 2006; 295: 1539–1548.

    Article  PubMed  CAS  Google Scholar 

  37. Morrow, J.D., T.A. Minton, C.R. Mukundan, et al., Free radical-induced generation of isoprostanes in vivo. J Biol Chem, 1994; 269: 4317–4326.

    PubMed  CAS  Google Scholar 

  38. Meydani, M., Isoprostanes as oxidant stress markers in coronary reperfusion. Nutr Rev, 1997; 55: 402–404.

    Google Scholar 

  39. Loft, S., A. Fischer-Nielsen, I.B. Jeding, et al., 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health, 1993; 40: 391–404.

    Article  PubMed  CAS  Google Scholar 

  40. Bordone, L. and L. Guarente, Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol, 2005; 6: 298–305.

    Article  PubMed  CAS  Google Scholar 

  41. Ghosh, H.S., M. McBurney and P.D. Robbins, SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One, 2010; 5: e9199.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Meydani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meydani, M., Das, S., Band, M. et al. The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: Results from the calerie trial of human caloric restriction. J Nutr Health Aging 15, 456–460 (2011). https://doi.org/10.1007/s12603-011-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-011-0002-z

Key words

Navigation