Advertisement

Air Quality, Atmosphere & Health

, Volume 12, Issue 4, pp 471–489 | Cite as

An experimental and numerical study of air pollution near unpaved roads

  • José Ignacio Huertas CardozoEmail author
  • Daniel Fernando Prato Sánchez
Article
  • 61 Downloads

Abstract

Aiming to advance in the understanding of pollutant dispersion near roads, we measured, simultaneously, vehicle traffic, meteorological parameters, and 24-h average concentration of particulate matter (TSP, PM10, and PM2.5) at several locations downwind two unpaved roads, located on a flat region without any other relevant source of pollutants. We also implemented on a commercial software of computational fluids dynamics (CFD) an air quality model to simulate the dispersion of particles and gas-phase pollutants emitted from roads. Numerical results of monthly and daily averages of total suspended particles (TSP) concentrations showed high correlation with experimental measurements (R2 > 0.94). We found, numerically and experimentally, that the plots of pollutant concentrations vs distance to the road edge converge into a single curve when they are expressed in terms of dimensionless numbers. Profiles of vertical concentration sketch an exponential function at the road edge, an S shape downwind and a flat shape far from the road. Particle size distribution fits a Rosin-Rammler function with average diameter of ~ 7 μm. This distribution remains unaltered downwind the road, which implies that at any location within 1.5 km from the road, PM10 and PM2.5 concentrations are a constant fraction of TSP concentration. Experimental data confirmed this observation. Previous results can be used to determine the size of the area impacted by roads, identify mitigating and adaptive countermeasures, and to improve the accuracy of vehicular emission factors.

Keywords

Computational fluid mechanics (CFD) Air quality modeling Environmental influence area Road emissions Unpaved roads 

Symbols

α1,α2

Beta function parameters

a, b, k

Empirical constants

C

TSP concentration at surface level (μg/m3)

Ci, j

TSP concentration for i hour and distances j from the road edge (μg/m3)

\( \overline{C_j} \)

Annual TSP concentration at distance j from the road edge (μg/m3)

C*

Dimensionless TSP concentration

d, \( \overline{d\ } \)

Particle diameter and average particle diameter (μm)

E

TSP mass emission rate per road area (g/s m2)

Efi

Emission factor for vehicle of size i in kg of TSP per vehicle and per km traveled (kg/VKT)

Fd

Dispersion factor

fPM10- fPM2.5

Fraction of PM10 and PM2.5 with respect to TSP

fk, q

The frequency at which wind speed of intensity k appears in the wind rose for direction q

gz

Gravity (m/s2)

K

Von Karman universal constant

μ

Fluid molecular viscosity (kg/m·s)

\( {\dot{m}}_{H,i} \)

Horizontal mass flow of pollutant i at a given distance to the road (kg/s)

Mj

Average weight of the vehicles of size j (Tons)

n

Spread parameter of the particle size distribution function

Ni

Number of vehicle of size i

Rc, i

Mass emission ratio

ρ, ρp

Fluid and particle density (kg/m3)

s

Silt content of road surface material

Sc

Schmidt number

u

Wind speed at height z (m/s)

u*

Friction velocity (m/s)

U

Mean wind speed in the x direction (m/s)

U*

Dimensionless speed ratio

Vs

Settling speed (m/s)

W

Road width (m)

wpo

Particle emission speed (m/s)

x

Distance from the road edge (m)

xe

Equivalent distance from the road (m)

x*

Non-dimensional distance to the road edge

Yd

Rosin-Rammler particle size distribution

z

Height (m)

zo

Surface roughness (m)

y+

Non-dimensional wall distance

Notes

References

  1. ANSYS, Inc. (2012)  ANSYS FLUENT Theory guide, Release 14.0. Southpointe  275 Technology, Drive CanonsburgGoogle Scholar
  2. ANSYS, Inc. (2012a) ANSYS FLUENT User’s guide,  Release 14.0. ​Southpointe  275 Technology Drive, CanonsburgGoogle Scholar
  3. ANSYS, Inc. (2012b) ANSYS FLUENT Getting started guide, Release 14.0. Southpointe 275 Technology Drive, CanonsburgGoogle Scholar
  4. Baldauf RW, Kinsey JS (2009) Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants. Atmos Environ 43(6):1229–1234.  https://doi.org/10.1016/j.atmosenv.2008.11.024 CrossRefGoogle Scholar
  5. Baldauf R, Thoma E, Isakov V, Long T, Weinstein J, Gilmour I, Cho S, Khlystov A, Chen F, Kinsey J, Hays M, Seila R, Snow R, Shores R, Olson D, Gullett B, Kimbrough S, Watkins N, Rowley P, Bang J, Costa D (2008) Traffic and meteorological impacts on near road air quality: summary of methods and trends from the Raleigh near road study. J Air Waste Manag Assoc 58:865–878.  https://doi.org/10.3155/1047-3289.58.7.865 CrossRefGoogle Scholar
  6. Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: wall function problems. Atmos Environ 41(2):238–252.  https://doi.org/10.1016/j.atmosenv.2006.08.019 CrossRefGoogle Scholar
  7. Blocken B, Janssen WD, Van Hooff T (2012) CFD simulation for pedestrian wind comfort and wind safety in urban areas: general decision framework and case study for the Eindhoven University campus. Environ Model Softw 30:15e34–15e34.  https://doi.org/10.1016/j.envsoft.2011.11.009 CrossRefGoogle Scholar
  8. Chaney AM, Cryer DJ, Nicholl EJ, Seakins PW (2011) NO and NO2 interconversion downwind of two different line sources in suburban environments. Atmos Environ 45(32):5863–5871.  https://doi.org/10.1016/j.atmosenv.2011.06.070 CrossRefGoogle Scholar
  9. Chen JX, Fu X, Wegman J (1999) Real-time simulation of dust behavior generated by a fast traveling vehicle. ACM T Model Comput S 9(2):81–104.  https://doi.org/10.1145/333296.333366 CrossRefGoogle Scholar
  10. Chen H, Bai S, Eisinger D, Niemeier D, Claggett M (2008) Modelling uncertainties and near-road PM 2.5: a comparison of Caline4, Cal3Qhc and Aermod. University of California, DavisGoogle Scholar
  11. Chock DP (1978) A simple line-source model for dispersion near roadways. Atmos Environ 12:823–832.  https://doi.org/10.1016/0004-6981(78)90019-7 CrossRefGoogle Scholar
  12. Clements AL, Jia Y, Denbleyker A, McDonald-Buller E, Fraser MP, Allen DT, Collins DR, Michel E, Pudota J, Sullivan D, Zhu Y (2009) Air pollutant concentrations near three Texas roadways, part II: chemical characterization and transformation of pollutants. Atmos Environ 43:4523–4534.  https://doi.org/10.1016/j.atmosenv.2009.06.044 CrossRefGoogle Scholar
  13. Dahl A, Gharibi A, Swietlicki E, Gudmundsson A, Bohgard M, Ljungman A, Blomqvist G, Gustafsson M (2006) Traffic generated emissions of ultrafine particles from pavement-tire interface. Atmos Environ 40:1314–1323.  https://doi.org/10.1016/j.atmosenv.2005.10.029 CrossRefGoogle Scholar
  14. Elbir T, Kara M, Bayram A (2010) Comparison of predicted and observed PM 10 concentrations in several urban street canyons. Air Qual Atmos Health 4:121–131.   https://doi.org/10.1007/s11869-010-0080-9
  15. Etyemezian V, Ahonen S, Nikolic D, Gillies J, Kuhns H, Gillette D, Veranth J (2004) Deposition and removal of fugitive dust in the arid southwestern United States : measurements and model results. J Air Waste Manag Assoc 54(9):099–111.  https://doi.org/10.1080/10473289.2004.10470977 CrossRefGoogle Scholar
  16. Finn D, Clawson KL, Carter RG, Rich JD, Eckman RM, Perry SG, Heist DK (2010) Tracer studies to characterize the effects of roadside noise barriers on near-road pollutant dispersion under varying atmospheric stability conditions. Atmos Environ 44(2):204–214.  https://doi.org/10.1016/j.atmosenv.2009.10.012 CrossRefGoogle Scholar
  17. Franke J, Hellsten A, Schlnzen H, Carissimo B (2007) Best practice guideline for the CFD simulation of flows in the urban environment. In: COST Action 732: Quality Assurance and Improvement of Microscale Meteorological Models, COST Office, Brussels. Meteorological Institute, HamburgGoogle Scholar
  18. Gerardin F, Midoux N (2016) Attenuation of road dust emissions caused by industrial vehicle traffic. Atmos Environ 127:46–54.  https://doi.org/10.1016/j.atmosenv.2015.12.006 CrossRefGoogle Scholar
  19. Gillies JA, Etyemezian V, Kuhns H, Nikolic D, Gillette DA (2005) Effect of vehicle characteristics on unpaved road dust emissions. Atmos Environ 39(13):2341–2347.  https://doi.org/10.1016/j.atmosenv.2004.05.064 CrossRefGoogle Scholar
  20. Hagler GS, Thoma ED, Baldauf RW (2010) High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment. J Air Waste Manag Assoc 60(3):328–336.  https://doi.org/10.3155/1047-3289.60.3.328 CrossRefGoogle Scholar
  21. Hargreaves DM, Wright NG (2007) On the use of the k-ɛ model in commercial CFD software to model the neutral atmospheric boundary layer. J Wind Eng Ind Aerod 95:355–369.  https://doi.org/10.1016/j.jweia.2006.08.002 CrossRefGoogle Scholar
  22. He M, Dhaniyala S (2012) Vertical and horizontal concentration distributions of ultrafine particles near a highway. Atmos Environ 46:225–236.  https://doi.org/10.1016/j.atmosenv.2011.09.076 CrossRefGoogle Scholar
  23. Holmes NS, Morawska L (2006) A review of dispersion modelling and its application to the -dispersion of particles: an overview of different dispersion models available. Atmos Environ 40(30):5902–5928.  https://doi.org/10.1016/j.atmosenv.2006.06.003 CrossRefGoogle Scholar
  24. Huang L, Gong SL, Gordon M, Liggio J, Staebler R, Stroud CA, Jia CQ (2014) Aerosol-computational fluid dynamics modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways. Atmos Chem Phys 14(23):12631–12648.  https://doi.org/10.5194/acp-14-12631-2014 CrossRefGoogle Scholar
  25. Huertas JI, Camacho DA, Huertas ME (2012a) Standardized emissions inventory methodology for open-pit mining areas. Environ Sci Pollut R 19(7):2784–2794.  https://doi.org/10.1007/s11356-012-0778-3 CrossRefGoogle Scholar
  26. Huertas JI, Huertas ME, Solis C (2012b) Characterization of airborne particles in an open pit mining region. Sci Total Environ 423:39–46.  https://doi.org/10.1016/j.scitotenv.2012.01.065 CrossRefGoogle Scholar
  27. Huertas ME, Huertas JI, Valencia A (2017) Vehicular road influence areas. Atmos Environ 151:108–116.  https://doi.org/10.1016/j.atmosenv.2016.12.006 CrossRefGoogle Scholar
  28. IEA (2016) Energy and Air Pollution: World Energy Outlook Special Report 2016. International Energy Agency, Paris, France.  https://doi.org/10.1787/weo-2016-en
  29. INV E-123-13 (2013) Determinación de los tamaños de las partículas de los suelos. Instituto Nacional del Vias, BogotáGoogle Scholar
  30. Karner AA, Eisinger DS, Niemeier DA (2010) Near-roadway air quality: synthesizing the findings from real-world data. Environ Sci Technol 44(14):5334–5344.  https://doi.org/10.1021/es100008x CrossRefGoogle Scholar
  31. King RP (2002) Introduction to practical fluid flow. Butterworth-Heinemann, OxfordGoogle Scholar
  32. Kumar P, Robins A, Vardoulakis S, Britter R (2010) A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos Environ 44:5035–5052.  https://doi.org/10.1016/j.atmosenv.2010.08.016 CrossRefGoogle Scholar
  33. Kwak KH, Baik JJ, Ryu YH, Lee SH (2015) Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models. Atmos Environ 100:167–177.  https://doi.org/10.1016/j.atmosenv.2014.10.059 CrossRefGoogle Scholar
  34. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289.  https://doi.org/10.1016/0045-7825(74)90029-2
  35. Li B, Ho SS, Xue Y, Huang Y, Wang L, Cheng Y, Lee S (2017) Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: the first comprehensive study in northwestern China. Atmos Environ 161:1–12.  https://doi.org/10.1016/j.atmosenv.2017.04.029 CrossRefGoogle Scholar
  36. Res 610. Ministry of environment, BogotaGoogle Scholar
  37. Panofsky HA, Dutton JA (1984) Atmospheric turbulence. John Wiley & Sons, New YorkGoogle Scholar
  38. Pant P, Harrison RM (2013) Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ 77:78–97.  https://doi.org/10.1016/j.atmosenv.2013.04.028 CrossRefGoogle Scholar
  39. Parrish D (2006) Critical evaluation of US on-road vehicle emission inventories. Atmos Environ 40:2888–2300.  https://doi.org/10.1016/j.atmosenv.2005.11.033 CrossRefGoogle Scholar
  40. Pieterse JE, Harms TM (2013) CFD investigation of the atmospheric boundary layer under different thermal stability conditions. J Wind Eng Ind Aerod 121:82–97.  https://doi.org/10.1016/j.jweia.2013.07.014 CrossRefGoogle Scholar
  41. Rexeis M, Hausberger S (2009) Trend of vehicle emission levels until 2020 - prognosis based on current vehicle measurements and future emission legislation. Atmos Environ 43(31):4689–4698.  https://doi.org/10.1016/j.atmosenv.2008.09.034 CrossRefGoogle Scholar
  42. Richards PJ, Hoxey RP (1993) Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. J Wind Eng Ind Aerod 46:145–153.  https://doi.org/10.1016/0167-6105(93)90124-7 CrossRefGoogle Scholar
  43. Richards PJ, Norris SE (2011) Appropriate boundary conditions for computational wind engineering models revisited. J Wind Eng Ind Aerod 99:257–266.  https://doi.org/10.1016/j.jweia.2010.12.008 CrossRefGoogle Scholar
  44. Richards PJ, Fong S, Hoxey RP (1997) Anisotropic turbulence in the atmospheric surface layer. J Wind Eng Ind Aerod 69(71):903–913.  https://doi.org/10.1016/S0167-6105(97)00216-X CrossRefGoogle Scholar
  45. Roorda-knape M, Janssena N, Hartoga J, Van Vlieta P, Harssemaa H, Brunekreefa B (1998) Air pollution from traffic in city districts near major motorways. Atmos Environ 32(11):1921–1930.  https://doi.org/10.1016/S1352-2310(97)00496-2 CrossRefGoogle Scholar
  46. Sahlodin AM, Sotudeh-Gharebagh R, Zhu Y (2007) Modelling of dispersion near roadways based on the vehicle-induced turbulence concept. Atmos Environ 41(1):92–102.  https://doi.org/10.1016/j.atmosenv.2006.08.004 CrossRefGoogle Scholar
  47. Sharma N, Gulia S, Dhyani R, Singh A (2013) Performance evaluation of CALINE 4 dispersion model for an urban highway corridor in Delhi. J Sci Ind Res 72(8):521–530Google Scholar
  48. Shen Z, Cui G, Zhang Z (2017) Turbulent dispersion of pollutants in urban-type canopies under stable stratification conditions. Atmos Environ 156:1–14.  https://doi.org/10.1016/j.atmosenv.2017.02.017 CrossRefGoogle Scholar
  49. Snyder MG, Venkatram A, Heist DK, Perry SG, Petersen WB, Isakov V (2013) RLINE: a line source dispersion model for near-surface releases. Atmos Environ 77:748–756.  https://doi.org/10.1016/j.atmosenv.2013.05.074 CrossRefGoogle Scholar
  50. Stull R (2017) Practical meteorology: an algebra-based survey of atmospheric science. Univ. of British Columbia, Vancouver ISBN: 978-0-88865-283-6Google Scholar
  51. Tominaga Y, Stathopoulos T (2011) CFD modelling of pollution dispersion in a street canyon: comparison between LES and RANS. J Wind Eng Ind Aerod 99(4):340–348.  https://doi.org/10.1016/j.jweia.2010.12.005 CrossRefGoogle Scholar
  52. Tong X, Luke E, Smith R (2014) Numerical validation of a near-field fugitive dust model for vehicles moving on unpaved surfaces. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 228(7):747–757.  https://doi.org/10.1177/0954407013512291
  53. USEPA (1999) Sampling of ambient air for total suspended particulate matter (SPM) and PM10 using high volume (HV) sampler. Compendium method IO-2.1. US Environmental Protection Agency. Retrived from https://www3.epa.gov/ttnamti1/files/ambient/inorganic/mthd-2-1.pdf. Accessed 18 Feb 2019
  54. USEPA (2003) AP-42, miscellaneous source. Chapter 13, fifth edition. US Environmental Protection Agency. ​ Retrieved from https://www3.epa.gov/ttnchie1/ap42/ch13/. Accessed 18 Feb 2019
  55. USEPA (2006) Revision of emission factors for AP-42. Chapter 13: miscellaneous source. Section 13.2.2: Unpaved Roads (Fugitive Dust Sources). Retrieved from http://www.epa.gov/ttn/chief/ap42/index.html. Accessed 18 Feb 2019
  56. USEPA (2012) National Ambient Air Quality Standards (NAAQS). Environmental Protection Agency. Retrieved from http://www.epa.gov/air/criteria.htm. Accessed 18 Feb 2019
  57. USEPA (2013) National storm water calculator, User’s guide. ​Retrived from https://www.epa.gov/water-research/national-stormwater-calculator. Accessed 18 Feb 2019
  58. USEPA (2015) Technical support document (TSD) for replacement of CALINE3 with AERMOD for transportation related air quality analyses, EPA- 454/B-15-02. ​Retrieved from https://www3.epa.gov/scram001/appendix_w/2016/CAL3_AERMOD_Replacement_TSD.pdf. 18 Feb 2019
  59. USEPA (1998) Compilation of air pollutant emission factors, Vol. 1. Stationary, point and area sources, chapter 13.2.2 unpaved roads. US Environmental Protection Agency. ​ Retrieved from https://www3.epa.gov/ttn/chief/ap42/ch13/index.html. Accessed 18 Feb 2019
  60. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37(2):155–182.  https://doi.org/10.1016/S1352-2310(02)00857-9 CrossRefGoogle Scholar
  61. Venkatram A, Isakov V, Seila R, Baldauf R (2009) Modelling the impacts of traffic emissions on air toxics concentrations near roadways. Atmos Environ 43(20):3191–3199.  https://doi.org/10.1016/j.atmosenv.2009.03.046 CrossRefGoogle Scholar
  62. Venkatram A, Snyder M, Isakov V (2013) Modeling the impact of roadway emissions in light wind, stable and transition conditions. Transp Res D Trans Environ 24:110–119CrossRefGoogle Scholar
  63. Veranth JM, Seshadri G, Pardyjak E (2003) Vehicle-generated fugitive dust transport: analytic models and field study. Atmos Environ 37:2295–2303.  https://doi.org/10.1016/S1352-2310(03)00086-4 CrossRefGoogle Scholar
  64. Vicente B, Rafael S, Rodrigues V, Relvas H, Vilaça M, Teixeira J, Rafael S (2018) Influence of different complexity levels of road traffic models on air quality modelling at street scale. Air Qual Atmos Health 11(10):1217–1232.  https://doi.org/10.1007/s11869-018-0621-1 CrossRefGoogle Scholar
  65. Wang YJ, Zhang KM (2009) Modelling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT. Environ Sci Technol 43(20):7778–7783.  https://doi.org/10.1021/es9014844 CrossRefGoogle Scholar
  66. WMO (2008) Guide to Meteorological Instruments and Methods of observation. Guide to Meteorological Instruments and Methods of Observation (Vol. I). WMO, Geneva ISBN 978–92–63-10008-5Google Scholar
  67. Yuan C, Ng E, Norford LK (2014) Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build Environ 71(2):245–258.  https://doi.org/10.1016/j.buildenv.2013.10.008 CrossRefGoogle Scholar
  68. Zannetti P (1990) Air pollution modelling: theories, computational methods and available software. Springer, New York. ISBN: 1853121002.  https://doi.org/10.1007/978-1-4757-4465-1 CrossRefGoogle Scholar
  69. Zhu Y, Hinds WC, Kim S, Sioutas C (2002) Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manag Assoc 52(9):1032–1042.  https://doi.org/10.1080/10473289.2002.10470842 CrossRefGoogle Scholar
  70. Zou B, Benjamin Zhan F, Gaines Wilson J, Zeng Y (2010) Performance of AERMOD at different time scales. Simul Model Pract Th 18(5):612–623.  https://doi.org/10.1016/j.simpat.2010.01.005 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Engineering and ScienceTecnológico de MonterreyMonterreyMexico

Personalised recommendations