Signal, Image and Video Processing

, Volume 8, Issue 7, pp 1357–1372 | Cite as

Spatial color image processing using Clifford algebras: application to color active contour

  • Philippe CarréEmail author
  • Patrice Denis
  • Christine Fernandez-Maloigne
Original Paper


In the literature, the color information of the pixels of an image has been represented by different structures. Recently, algebraic entities such as quaternions or Clifford algebras have been used to perform image processing for example. This paper presents the embedding of color information into the vectorial parts of a multivector. This multivector is an element of the geometric or Clifford algebra constructed from a three-dimensional vector space. This formalism presents the advantage of algebraically separating colors which are handled entities from the geometric operations done to them. We propose to introduce several contributions for color image processing by using this Clifford algebra. First, as colors are represented by 1-vectors, we point out that a color pixel given in the RGB color space can be expressed algebraically by its hue saturation and value using the geometry. Then, we illustrate how this formalism can be used to define color alterations with algebraic operations. We generalize linear filtering algorithms already defined with quaternions and define a new color edge detector. Finally, the application of the new color gradient is illustrated by a new color formulation of snakes. Thus, we propose in this paper the definition and exploitation of a formalism in which we geometrically handle colors with algebraic entities and expressions.


Geometric algebras Clifford Multivectors Color image processing Color edge detection Active contour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batard, T., Berthier, M., Saint-Jean, C.: Clifford Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing, Engineering and Computer Science, pp. 135–162. Springer, April 2010. 28 pp., chapter 8 (2010)Google Scholar
  2. 2.
    Brackx F., De Schepper N., Sommen F.: The Clifford–Fourier transform. J. Fourier Anal. Appl. 11(6), 669–681 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brackx, F., De Schepper, N., Sommen, F.: Clifford–Hermite and two-dimensional Clifford–Gabor filters for early vision. In: 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering. Weimar, Germany (2006)Google Scholar
  4. 4.
    Brackx F., De Schepper N., Sommen F.: The two-dimensional Clifford–Fourier transform. J. Math. Imaging Vis. 26(1–2), 5–18 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carron, T.: Segmentation d’images couleur dans la base Teinte-Luminance-Saturation: approche numérique et symbolique. Ph.D. thesis, Université de Savoie, Dec 1995Google Scholar
  6. 6.
    Demarcq G., Mascarilla L., Berthier M., Courtellemont P.: The color monogenic signal: application to color edge detection and color optical flow. J. Math. Imaging Vis. 40, 269–284 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Denis P., Carré P., Fernandez-Maloigne C.: Spatial and spectral quaternionic approaches for colour images. Comput. Vis. Image Underst. 107, 74–87 (2007)CrossRefGoogle Scholar
  8. 8.
    Di Zenzo S.: A note on the gradient of multi-image. Comput. Vis. Graph. Image Process. 33, 116–125 (1986)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dorst L.: Geometric Algebra for Computer Science. Morgan Kaufmann, Burlington (2007)Google Scholar
  10. 10.
    Dorst L., Mann S.: Geometric algebra:a computational framework for geometrical applications (part i: algebra). Comput. Graph. Appl. IEEE 22(3), 24–31 (2002)CrossRefGoogle Scholar
  11. 11.
    Ebling, J., Scheuermann, G.: Template matching on vector fields using clifford algebra. In: International Conference on the Applications of Computer Science and Mathematics in Architekture and Civil Engineering (IKM 2006) (2006)Google Scholar
  12. 12.
    Ell, T.A.: Hypercomplex spectral transformation. Ph.D. thesis, University of Minnesota (1992)Google Scholar
  13. 13.
    Ell, T.A., Sangwine, S.J.: Decomposition of 2d hypercomplex fourier transforms into pairs of fourier transforms. In: Proceedings EUSIPCO, pp. 151–154 (2000)Google Scholar
  14. 14.
    Ell T.A., Sangwine S.J.: Hypercomplex Wiener–Kintchine theorem with application to color image correlation. In: IEEE Int. Conf. Image Process. ICIP 2, 792–795 (2000)Google Scholar
  15. 15.
    Ell T.A., Sangwine S.J.: Hypercomplex Fourier transform of color images. In: IEEE Trans. Signal Process. 16(1), 22–35 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Felsberg, M.: Low-level image processing with the structure multivector. Ph.D. thesis, Christian Albrechts University of Kiel, March 2002Google Scholar
  17. 17.
    Gosselin, P.-H.: Quaternions et images couleur (2002)Google Scholar
  18. 18.
    Hestenes D.: New Foundations for Classical Mechanics, 2nd edn. Kluwer, Dordrecht (1986)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hestenes D., Sobczyk G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Reidel, Dordrecht (1984)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lasenby J., Lasenby A.N., Doran C.J.L.: A unified mathematical language for physics and engineering in the 21st century. Philos. Trans. R. Soc. A 358, 21–39 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sangwine S.J.: Fourier transforms of colour images using quaternion, or hypercomplex, numbers. Electron. Lett. 32(21), 1979–1980 (1996)CrossRefGoogle Scholar
  22. 22.
    Sangwine, S.J.: The discrete quaternion fourier transform. In: Proceedings of the 6th International Conference on Image Processing and Its Applications vol. 2, pp. 790–793, 14–17 July 1997Google Scholar
  23. 23.
    Sangwine S.J.: Colour image edge detector based on quaternion convolution. Electron. Lett. 34(10), 969–971 (1998)CrossRefGoogle Scholar
  24. 24.
    Sangwine S.J.: Colour in image processing. Electron. Commun. Eng. J. 12(5), 211–219 (2000)CrossRefGoogle Scholar
  25. 25.
    Sangwine, S.J., Ell, T.A.: Hypercomplex auto- and cross-correlation of color images. In: IEEE International Conference on Image Processing (ICIP), vol. 4, pp. 319–322 (1999)Google Scholar
  26. 26.
    Sangwine, S.J., Ell, T.A.: Hypercomplex Fourier transforms of colour images. In: Proceedings ICIP, pp. 137–140 (2001)Google Scholar
  27. 27.
    Sangwine, S.J., Ell, T.A.: Mathematical approaches to linear vector filtering of colour images. In: First European Conference on Colour in Graphics, Imaging and Vision (CGIV 2002), July 2002Google Scholar
  28. 28.
    Sapiro G.: Colour snakes. Comput. Vis. Image Underst. 2(68), 247–253 (1997)CrossRefGoogle Scholar
  29. 29.
    Schlemmer, M., Hagen, H., Hotz, I., Hamann, B.: Clifford pattern matching for color image edge detection. In: Visualization of Large and Unstructured Data Sets, GI-Edition Lecture Notes in Informatics (LNI), vol. 4 (2006)Google Scholar
  30. 30.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. In: IEEE Trans. Image Process. 7(3), 359–369 (1998)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Philippe Carré
    • 1
    Email author
  • Patrice Denis
    • 1
  • Christine Fernandez-Maloigne
    • 1
  1. 1.XLIM Laboratory, SIC DepartmentUniversity of Poitiers, UMR CNRS 7252Futuroscope Chasseneuil CedexFrance

Personalised recommendations