Skip to main content

Color Representation and Processes with Clifford Algebra

  • Chapter
  • First Online:
Advanced Color Image Processing and Analysis

Abstract

In the literature, colour information of pixels of an image has been represented by different structures. Recently algebraic entities such as quaternions or Clifford algebras have been used to perform image processing for example. We propose to review several contributions for colour image processing by using the Quaternion algebra and the Clifford algebra. First, we illustrate how this formalism can be used to define colour alterations with algebraic operations. We generalise linear filtering algorithms already defined with quaternions and review a Clifford color edge detector. Clifford algebras appear to be an efficient mathematical tool to investigate the geometry of nD images. It has been shown for instance how to use quaternions for colour edge detection or to define an hypercomplex Fourier transform. The aim of the second part of this chapter is to present an example of applications, namely the Clifford Fourier transform of Clifford algebras to colour image processing.

The color is stronger than the language

Marie-Laure Bernadac

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the following, little letters will be used to represent 1-vectors whereas bolded capital letters will stand for any multivectors.

References

  1. Sangwine SJ (1996) Fourier transforms of colour images using quaternion, or hypercomplex, numbers. Electron Lett 32(21):1979–1980

    Article  Google Scholar 

  2. Sangwine SJ (1998) Colour image edge detector based on quaternion convolution. Electron Lett 34(10):969–971

    Article  Google Scholar 

  3. Moxey CE, Sangwine SJ, Ell TA (2002) Vector correlation of colour images. In: First European conference on colour in graphics, imaging and vision (CGIV 2002), pp 343–347

    Google Scholar 

  4. Dorst L, Mann S (2002) Geometric algebra: a computational framework for geometrical applications (part i: algebra). IEEE Comput Graph Appl 22(3):24–31

    Article  Google Scholar 

  5. Hestenes D, Sobczyk G (1984) Clifford algebra to geometric calculus: a unified language for mathematics and physics. Reidel, Dordrecht

    Book  MATH  Google Scholar 

  6. Hestenes D (1986) New foundations for classical mechanics, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  7. Lasenby J, Lasenby AN, Doran CJL (2000) A unified mathematical language for physics and engineering in the 21st century. Phil Trans Math Phys Eng Sci 358:21–39

    Article  MathSciNet  MATH  Google Scholar 

  8. Sangwine SJ (2000) Colour in image processing. Electron Comm Eng J 12(5):211–219

    Article  Google Scholar 

  9. Denis P, Carré P (2007) Colour gradient using geometric algebra. In EUSIPCO2007, 15th European signal processing conference, Poznań, Poland

    Google Scholar 

  10. Ell TA, Sangwine SJ (2007) Hypercomplex fourier transform of color images. IEEE Trans Signal Process 16(1):22–35

    MathSciNet  Google Scholar 

  11. Sochen N, Kimmel R, Malladi R (1998) A general framework for low level vision. IEEE Trans Image Process 7:310–318

    Article  MathSciNet  MATH  Google Scholar 

  12. Batard T, Saint-Jean C, Berthier M (2009) A metric approach to nd images edge detection with clifford algebras. J Math Imag Vis 33:296–312

    Article  MathSciNet  Google Scholar 

  13. Felsberg M (2002) Low-level image processing with the structure multivector. Ph.D. thesis, Christian Albrechts University of Kiel

    Google Scholar 

  14. Ebling J, Scheuermann G (2005) Clifford fourier transform on vector fields. IEEE Trans Visual Comput Graph 11(4):469–479

    Article  Google Scholar 

  15. Mawardi M, Hitzer E (2006) Clifford fourier transformation and uncertainty principle for the clifford geometric algebra cl3,0. Advances in applied Clifford algebras 16:41–61

    Article  MathSciNet  MATH  Google Scholar 

  16. Brackx F, De Schepper N, Sommen F (2006) The two-dimensional clifford-fourier transform. J Math Imaging Vis 26(1–2):5–18

    Article  MATH  Google Scholar 

  17. Smach F, Lemaitre C, Gauthier JP, Miteran J, Atri M (2008) Generalized fourier descriptors with applications to objects recognition in svm context. J Math Imaging Vis 30:43–71

    Article  MathSciNet  Google Scholar 

  18. Bülow T (1999) Hypercomplex spectral sinal representations for the processing and analysis of images. Ph.D. thesis, Christian Albrechts University of Kiel

    Google Scholar 

  19. Vilenkin NJ (1968) Special functions and the theory of group representations, vol 22. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  20. Helgason S (1978) Differential geometry, Lie groups and symmetric spaces. Academic Press, London

    MATH  Google Scholar 

  21. Lounesto P (1997) Clifford algebras and spinors. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Hestenes D, Sobczyk G (1987) Clifford algebra to geometric calculus: a unified language for mathematics and physics. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Carré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carré, P., Berthier, M. (2013). Color Representation and Processes with Clifford Algebra. In: Fernandez-Maloigne, C. (eds) Advanced Color Image Processing and Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6190-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6190-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6189-1

  • Online ISBN: 978-1-4419-6190-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics