Skip to main content
Log in

Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this study, we analysed morphological, anatomical and physiological effects of polyploidisation in Spathiphyllum wallisii in order to evaluate possible interesting advantages of polyploids for ornamental breeding. Stomatal density was negatively correlated with increased ploidy level. Stomatal size increased in polyploids. Tetraploid Spathiphyllum plants had more ovate and thicker leaves. The inflorescence of tetraploids had a more ovate and thicker spathum, a more cylindrical spadix and a thicker but shorter flower stalk. Biomass production of the tetraploids was reduced, as expressed by lower total dry weights, and tetraploids produced fewer shoots and leaves compared with their diploid progenitors. Furthermore, tetraploid Spathiphyllum plants were more resistant to drought stress compared with diploid plants. After 15 days of drought stress, diploids showed symptoms of wilting, while the tetraploids showed almost no symptoms. Further, measurements of stomatal resistance, leaf water potential, relative water content and proline content indicated that the tetraploid genotypes were more resistant to drought stress compared with the diploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  PubMed  CAS  Google Scholar 

  • Allum J, Bringloe D, Roberts A (2007) Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984

    Article  PubMed  CAS  Google Scholar 

  • Araus JL, Alegre L, Tapia L, Calafell R (1986) Relationship between leaf structure and gas exchange in wheat leaves at different insertion levels. J Exp Bot 37:1323–1333

    Article  Google Scholar 

  • Aryavand A, Ehdaie B, Tran B, Waines JG (2003) Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta. Genet Resour Crop Evol 50:175–182

    Article  CAS  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique of estimating water deficit in leaves. Aust J Biol Sci 15:416–428

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Boyer J (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Biswas DK, Shang AQ, Zhao LJ, Li WD (2007) Photosynthetic response to water stress and changes in metabolites in Jasminum sambac. Photosynthetica 45:503–509

    Article  CAS  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Dewey DR (1980) Some application and misapplication of induced polyploidy to plant breeding. In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 445–470

    Google Scholar 

  • Dhooghe E, Grunewald W, Leus L, Van Labeke MC (2008) In vitro polyploidisation of Helleborus species. Euphytica 165:89–95

    Article  Google Scholar 

  • Eeckhaut T, Werbrouck S, Leus L, Van Bockstaele E, Debergh P (2004) Chemically induced polyploidization of Spathiphyllum wallisii Regel through somatic embryogenesis. Plant Cell Tissue Organ Cult 78:241–246

    Article  CAS  Google Scholar 

  • Fonnesbech M, Fonnesbech A (1979) In vitro propagation of Spathiphyllum. Sci Hortic 10:21–25

    Article  Google Scholar 

  • Galmes J, Flexas J, Savé R, Medrano H (2007) Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil 290:139–155

    Article  CAS  Google Scholar 

  • Gu XF, Yang AF, Meng H, Zhang JR (2005) In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. Cv. Zhanhua. Plant Cell Rep 24:671–676

    Article  PubMed  CAS  Google Scholar 

  • Hamill S, Smith M, Dodd W (1992) In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids. Aust J Bot 40:887–896

    Article  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  PubMed  CAS  Google Scholar 

  • Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Khosravi P, Kermani M, Nematzadeh G, Bihamta M, Yokoya K (2008) Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica 160:267–275

    Article  CAS  Google Scholar 

  • Kobayashi N, Yamashita S, Ohta K, Hosoki T (2008) Morphological characteristics and their inheritance in colchicine-induced Salvia polyploids. J Japan Soc Hort Sci 77(2):186–191

    Article  Google Scholar 

  • Kundu SK, Tigerstedt PMA (1998) Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica). Tree Physiol 19:47–52

    Google Scholar 

  • Li WL, Berlyn GP, Ashton PS (1996) Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am J Bot 83:15–20

    Article  Google Scholar 

  • Li WD, Biswas DK, Xu H, Xu CQ, Wang XZ, Liu JK, Jiang GM (2009) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792

    Article  CAS  Google Scholar 

  • Liu G, Li Z, Bao M (2007) Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157:145–154

    Article  Google Scholar 

  • Maherali H, Walden AL, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A (1999) Leaf morphophysiology and distribution of epiphytic aroids along a vertical gradient in a Brazilian rain forest. Selbyana 20(2):241–249

    Google Scholar 

  • Marchant C (1973) Chromosome variation in Araceae: V. Acoraceae to Lasieae. Kew Bulletins 28:199–210

    Article  Google Scholar 

  • Mears JA (1980) Chemistry of polyploids: a summary with comments on Parthenium (Asteraceae-Ambrosiinae). In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 77–102

    Google Scholar 

  • Miller-Rushing AJ, Primack RB, Templer PH, Rathbone S, Mukunda S (2009) Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. Am J Bot 96:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Mishra MK (1997) Stomatal characteristics at different ploidy levels in Coffea L. Ann Bot 80:689–692

    Article  Google Scholar 

  • Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploid grapes via in vitro chromosome doubling. J Jpn Soc Hortic Sci 69:543–551

    Article  CAS  Google Scholar 

  • Ntuli NR, Zobolo AM (2008) Effect of water stress on growth of colchicine induced polyploid Coccinia palmata and Lagenaria sphaerica plants. Afr J Biotechnol 7:3548–3652

    CAS  Google Scholar 

  • Pustovoitova TN, Eremin GV, Rassvetaeva EG, Zhdanova NE, Zholkevich VN (1996) Drought resistance, recovery capacity, and phytohormone content in polyploid plum meaves. Russ J Plant Physiol 43:232–235

    CAS  Google Scholar 

  • Riddle NC, Kato A, Birchler JA (2006) Genetic variation for the response to ploidy change in Zea mays L. Theor Appl Genet 114:101–111

    Article  PubMed  Google Scholar 

  • Rose J, Kubba J, Tobutt K (2000a) Chromosome doubling in sterile Syringa vulgaris × S. pinnatifolia hybrids by in vitro culture of nodal explants. Plant Cell Tissue Organ Cult 63:127–132

    Article  Google Scholar 

  • Rose J, Kubba J, Tobutt K (2000b) Induction of tetraploidy in Buddleia globosa. Plant Cell Tissue Organ Cult 63:121–125

    Article  Google Scholar 

  • Shiga I, Uno Y, Kanechi M, Inagaki N (2009) Identification of polyploidy of in vitro anther-derived shoots of Asparagus officinalis L. by flow cytometric analysis and measurement of stomatal length. J Jpn Soc Hort Sci 78(1):103–108

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    Article  PubMed  CAS  Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyl fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56

    Article  CAS  Google Scholar 

  • Stanys V, Wechman A, Staniene G, Duchovskis P (2006) In vitro induction of polyploidy in Japanese quince (Chaenomeles japonica). Plant Cell Tissue Org Cult 84:263–267

    Article  CAS  Google Scholar 

  • Stebbins GL (1971) Chromosome evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Sun QR, Sun HS, Li LG, Bell RL (2009) In vitro colchicine-induced polyploid plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L.) cultivar ‘Fertility’. J Hortic Sci Biotech 84(5):548–552

    CAS  Google Scholar 

  • Takamura T, Miyajima I (1996) Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. Sci Hortic 65:305–312

    Article  CAS  Google Scholar 

  • Tal M (1980) Physiology of polyploids. In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 61–76

    Google Scholar 

  • Thao N, Ureshina K, Miyajima I, Ozaki Y, Okubo H (2003) Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tissue Organ Cult 72:19–25

    Article  CAS  Google Scholar 

  • Väinölä A (2000) Polyploidization and early screening of Rhododendron hybrids. Euphytica 112:239–244

    Article  Google Scholar 

  • Vaïnölä A, Repo T (2001) Polyploidisation of Rhododendron cultivars in vitro and how it affects cold hardiness. Acta Hort 560:319–322

    Google Scholar 

  • Vanstechelman I, Eeckhaut T, Huylenbroeck J, Van Labeke M (2010) Histogenic analysis of chemically induced mixoploids in Spathiphyllum wallisii. Euphytica 174(1):61–72

    Article  Google Scholar 

  • Xiong YC, Li FM, Zhang T (2006) Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. Planta 224:710–718

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (1989) Basic studies on the flower color breeding of carnations (Dianthus caryophyllus L.). Bull Fac Hort Miamikyusyu Univ 19:1–79

    Google Scholar 

  • Yang X, Cao Z, An L, Wang Y, Fang X (2006) In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica 152:217–224

    Article  Google Scholar 

  • Zhang J, Zhang M, Deng X (2007) Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell Tissue Organ Cult 89:211–216

    Article  Google Scholar 

  • Zhang Z, Dai H, Xiao M, Liu X (2008) In vitro induction of tetraploids in Phlox subulata L. Euphytica 159:59–65

    Article  Google Scholar 

  • Zhang QY, Luo FX, Liu L, Guo FC (2010a) In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tissue Organ Cult 101:41–47

    Article  CAS  Google Scholar 

  • Zhang XY, Hu CG, Yao JL (2010b) Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167:88–94

    Article  PubMed  CAS  Google Scholar 

  • Zlesak D, Thill C, Anderson N (2005) Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss. Euphytica 141:281–290

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank IWT-Flanders for their financial support and Deroose Plants and Floreac for kindly offering Spathiphyllum genotypes. The help of the technical staff at ILVO-Plant, Ghent University and PCS, namely Pepijn De Raeymaecker, Ingrid Proven, Annemie Stocké and Johan Ongena is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrijn Van Laere.

Additional information

Communicated by B. Borkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Laere, K., França, S.C., Vansteenkiste, H. et al. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii . Acta Physiol Plant 33, 1149–1156 (2011). https://doi.org/10.1007/s11738-010-0643-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0643-2

Keywords

Navigation