Skip to main content
Log in

Ultrasensitive Detection of Methylene Blue Using an Electrochemically Synthesized SERS Sensor Based on Gold and Silver Nanoparticles: Roles of Composition and Purity on Sensing Performance and Reliability

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An electrochemical approach has been used for green synthesis of gold and silver nanoparticles (e-AuNPs and e-AgNPs) with high levels of purity and scalability. The electrochemically synthesized noble-metal nanoparticles were characterized by ultraviolet–visible (UV–Vis) spectroscopy and scanning electron microscopy (SEM), confirming the formation of spherical e-AuNPs and e-AgNPs with average size of 19 nm and 24 nm, respectively. These green nanoparticles were deposited on aluminum substrates using the drop-drying method for surface-enhanced Raman scattering (SERS)-based detection of Methylene Blue (MB) within the ranges from 10−5 M to 10−8 M and 10−7 M to 10−10 M, respectively. The SERS sensors also exhibited outstanding sensing performance for MB detection with limits of detection (LOD) of 9 × 10−11 M for e-AuNPs and 5 × 10−12 M for e-AgNPs. The enhancement factors (EFs) of the two noble-metal NPs were estimated to be 4.4 × 107 for e-AuNPs and 1.98 × 109 for e-AgNPs at an MB concentration of 10−8 M. We then clarified the roles of the purity and composition of these nanoparticles (NPs) on their SERS sensing performance by comparing our sensors with several reported sensing systems, as well as comparing our two kinds of NPs, in terms of sensitivity, stability, and reproducibility. We also propose a possible mechanism for the enhancement of the SERS signal observed for our two electrochemically synthesized NPs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Fleischmann, P.J. Hendra, and A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).

    Article  CAS  Google Scholar 

  2. D.L. Jeanmaire, and R.P. Van Duyne, J. Electroanal. Chem. Interf. Electrochem. 84, 1 (1977).

    Article  CAS  Google Scholar 

  3. M.G. Albrecht, and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode J. Am. Chem. Soc. 99, 5215 (1977).

    Article  CAS  Google Scholar 

  4. E. Massarini, P. Wästerby, L. Landström, C. Lejon, O. Beck, and P.O. Andersson, Sens. Actuators B Chem. 207, 437 (2015).

    Article  CAS  Google Scholar 

  5. S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, and Z. Zhao, Nat. Commun. 6, 7800 (2015).

    Article  CAS  Google Scholar 

  6. S. Hong, and X. Li, J. Nanomater. 2013, 790323 (2013).

    Google Scholar 

  7. S. Kumar, P. Kumar, A. Das, C.S. Pathak, Surface-Enhanced Raman Scattering: Introduction and Applications, Recent Advances in Nanophotonics - Fundamentals and Applications (Mojtaba Kahrizi and Parsoua A. Sohi, IntechOpen, 2020).

  8. X. Gu, M.J. Trujillo, J.E. Olson, and J.P. Camden, Annu. Rev. Anal. Chem. 11, 147 (2018).

    Article  CAS  Google Scholar 

  9. S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J.A. Dieringer, and R.P. Van Duyne, Phys. Chem. Chem. Phys. 15, 21 (2013).

    Article  CAS  Google Scholar 

  10. X. Meng, J. Dyer, Y. Huo, and C. Jiang, Langmuir 36, 3558 (2020).

    Article  CAS  Google Scholar 

  11. G. Das, M. Chirumamilla, A. Gopalakrishnan, A. Toma, S. Panaro, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 111, 247 (2013).

    Article  CAS  Google Scholar 

  12. X.H. Vu, N.D. Dien, T.T. Ha Pham, T.T. Trang, N.X. Ca, P.T. Tho, N.D. Vinh, and P. Van Do, RSC Adv. 10, 38974 (2020).

    Article  CAS  Google Scholar 

  13. W.J. Anderson, K. Nowinska, T. Hutter, S. Mahajan, and M. Fischlechner, Nanoscale 10, 7138 (2018).

    Article  CAS  Google Scholar 

  14. L. Li, S. Deng, H. Wang, R. Zhang, K. Zhu, Y. Lu, Z. Wang, S. Zong, Z. Wang, and Y. Cui, Nanotechnology 30, 255503 (2019).

    Article  CAS  Google Scholar 

  15. V.V. Thacker, L.O. Herrmann, D.O. Sigle, T. Zhang, T. Liedl, J.J. Baumberg, and U.F. Keyser, Nat. Commun. 5, 3448 (2014).

    Article  Google Scholar 

  16. H.A. Nguyen, I. Jupin, P. Decorse, S. Lau-Truong, S. Ammar, and N.-T. Ha-Duong, RSC Adv. 9, 32296 (2019).

    Article  CAS  Google Scholar 

  17. K. Quester, M. Avalos-Borja, A.R. Vilchis-Nestor, M.A. Camacho-Lopez, and E. Castro-Longoria, PLoS ONE 8, e77486 (2013).

    Article  CAS  Google Scholar 

  18. R.D. Ávila-Avilés, M.A. Camacho-López, E. Castro-Longoria, A. Dorazco-González, N. Hernández-Guerrero, and A.R. Vilchis-Nestor, MRS Adv. 5, 3397 (2020).

    Article  Google Scholar 

  19. R. Funari, R. Ripa, B. Söderström, U. Skoglund, and A.Q. Shen, ACS Sens. 4, 3023 (2019).

    Article  CAS  Google Scholar 

  20. P.G. Martínez-Torres, M.M. Martínez-García, P.E. Cardoso-Ávila, and J.L. Pichardo-Molina, Nanomater. Nanotechnol. 5, 12 (2015).

    Article  Google Scholar 

  21. V.Q. Khue, T.Q. Huy, V.N. Phan, A. Tuan-Le, D.T. Thanh Le, M. Tonezzer, and N.T. Hong Hanh, Mater. Chem. Phys. 255, 123562 (2020).

    Article  CAS  Google Scholar 

  22. Q.K. Vu, Q.H. Tran, N.P. Vu, T.-L. Anh, T.T.L. Dang, T. Matteo, and T.H.H. Nguyen, Mater. Today Commun. 26, 101726 (2021).

    Article  CAS  Google Scholar 

  23. C.-J. Huang, P.-H. Chiu, Y.-H. Wang, K.-L. Chen, J.-J. Linn, and C.-F. Yang, J. Electrochem. Soc. 153, D193 (2006).

    Article  CAS  Google Scholar 

  24. V. Amendola, and M. Meneghetti, J. Phys. Chem. C 113, 4277 (2009).

    Article  CAS  Google Scholar 

  25. C. Ruan, G. Eres, W. Wang, Z. Zhang, and B. Gu, Langmuir 23, 5757 (2007).

    Article  CAS  Google Scholar 

  26. G.-N. Xiao, and S.-Q. Man, Chem. Phys. Lett. 447, 305 (2007).

    Article  CAS  Google Scholar 

  27. L. Zhong, Y. Hu, D. Xing, Adsorption orientation of methylene blue (MB+) on the silver colloid: SERS and DFT studies, 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 1 (2009).

  28. F. Matter, A.L. Luna, and M. Niederberger, Nano Today 30, 100827 (2020).

    Article  CAS  Google Scholar 

  29. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, Nat. Rev. Mater. 1, 16021 (2016).

    Article  CAS  Google Scholar 

  30. H.Q. Anh, T.P.Q. Le, N. Da Le, X.X. Lu, T.T. Duong, J. Garnier, E. Rochelle-Newall, S. Zhang, N.-H. Oh, C. Oeurng, C. Ekkawatpanit, T.D. Nguyen, Q.T. Nguyen, T.D. Nguyen, T.N. Nguyen, T.L. Tran, T. Kunisue, R. Tanoue, S. Takahashi, T.B. Minh, H.T. Le, T.N.M. Pham, and T.A.H. Nguyen, Sci. Total Environ. 764, 142865 (2021).

    Article  CAS  Google Scholar 

  31. K. Nehra, S.K. Pandian, C. Byram, S.S.B. Moram, and V.R. Soma, J. Phys. Chem. C 123, 16210 (2019).

    Article  CAS  Google Scholar 

  32. O. Olea-Mejía, M. Fernández-Mondragón, G. Rodríguez-de la Concha, and M. Camacho-López, Appl. Surf. Sci. 348, 66 (2015).

    Article  Google Scholar 

  33. M. Zannotti, A. Rossi, and R. Giovannetti, Coatings 10, 288 (2020).

    Article  CAS  Google Scholar 

  34. K. Kolwas, and A. Derkachova, Nanomaterials (Basel) 10, 1411 (2020).

    Article  CAS  Google Scholar 

  35. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, and A. Boltasseva, Laser Photon. Rev. 4, 795 (2010).

    Article  CAS  Google Scholar 

  36. N.D. Israelsen, C. Hanson, and E. Vargis, Sci. World J. 2015, 124582 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) through a fundamental research project (103.02-2018.48). The authors would like to acknowledge the support for Raman, UV–Vis measurements from NEB Lab, Phenikaa University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Ha Anh or Anh-Tuan Le.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 297 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, M.Q., Anh, N.H., Quang, N.X. et al. Ultrasensitive Detection of Methylene Blue Using an Electrochemically Synthesized SERS Sensor Based on Gold and Silver Nanoparticles: Roles of Composition and Purity on Sensing Performance and Reliability. J. Electron. Mater. 51, 150–162 (2022). https://doi.org/10.1007/s11664-021-09228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09228-5

Keywords

Navigation