Skip to main content

Advertisement

Log in

Thermal properties and ionic conductivity of Li1,3Ti1,7Al0,3(PO4)3 solid electrolytes sintered by field-assisted sintering

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li1,3Ti0,7Al0,3(PO4)3 (LATP) powder was obtained by a conventional melt-quenching method and consolidated by field-assisted sintering technology (FAST) at different temperatures. Using this technique, the samples could be sintered to relative densities in the range of 93 to 99 % depending on the sintering conditions. Ionic and thermal conductivity were measured and the results are discussed under consideration of XRD and SEM analyses. Thermal conductivity values of 2 W/mK and ionic conductivities of 4 × 10−4 Scm−1 at room temperature were obtained using relatively large particles and a sintering temperature of 1000 °C at an applied uniaxial pressure of 50 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maldonadomanso P, Martinsedeno M, Bruque S et al (2007) Unexpected cationic distribution in tetrahedral/octahedral sites in nominal Li1+xAlxGe2−x(PO4)3 NASICON series. Solid State Ionics 178:43–52. doi:10.1016/j.ssi.2006.11.016

    Article  CAS  Google Scholar 

  2. Goodenough JB, Hong H-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220. doi:10.1016/0025-5408(76)90077-5

    Article  CAS  Google Scholar 

  3. Aono H, Sugimoto E, Sadaoka Y et al (1989) Ionic conductivity of the lithium titanium phosphate (LI1+XALXTI2−X(PO4)3), (LI1+XScXTI2−X(PO4)3), (LI1+XYXTI2−X(PO4)3), (LI1+XLaXTI2−X(PO4)3) systems. J Electrochem Soc 136:590–591. doi:10.1149/1.2096693

    Article  CAS  Google Scholar 

  4. Arbi K, Lazarraga MG, Ben Hassen Chehimi D et al (2004) Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem Mater 16:255–262. doi:10.1021/cm030422i

    Article  CAS  Google Scholar 

  5. Narváez-Semanate JL, Rodrigues ACM (2010) Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181:1197–1204. doi:10.1016/j.ssi.2010.05.010

    Article  Google Scholar 

  6. Wu XM, Li XH, Zhang YH et al (2004) Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol–gel technique. Mater Lett 58:1227–1230. doi:10.1016/j.matlet.2003.09.013

    Article  CAS  Google Scholar 

  7. Kosova NV, Devyatkina ET, Stepanov AP, Buzlukov AL (2008) Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x=0; 0.3) prepared by mechanical activation. Ionics (Kiel) 14:303–311. doi:10.1007/s11581-007-0197-5

    Article  CAS  Google Scholar 

  8. Bucharsky EC, Schell KG, Hintennach A, Hoffmann MJ (2015) Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2−x(PO4)3. Solid State Ionics 274:77–82. doi:10.1016/j.ssi.2015.03.009

    Article  CAS  Google Scholar 

  9. Arbi K, Rojo JM, Sanz J (2007) Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc 27:4215–4218. doi:10.1016/j.jeurceramsoc.2007.02.118

    Article  CAS  Google Scholar 

  10. Alamo J (1993) Chemistry and properties of solids with the [NZP] skeleton. Solid State Ionics 63–65:547–561. doi:10.1016/0167-2738(93)90158-Y

    Article  Google Scholar 

  11. Shimonishi Y, Zhang T, Johnson P et al (2010) A study on lithium/air secondary batteries—stability of NASICON-type glass ceramics in acid solutions. J Power Sources 195:6187–6191. doi:10.1016/j.jpowsour.2009.11.023

    Article  CAS  Google Scholar 

  12. Shimonishi Y, Zhang T, Imanishi N et al (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196:5128–5132. doi:10.1016/j.jpowsour.2011.02.023

    Article  CAS  Google Scholar 

  13. Hasegawa S, Imanishi N, Zhang T et al (2009) Study on lithium/air secondary batteries—stability of NASICON-type lithium ion conducting glass–ceramics with water. J Power Sources 189:371–377. doi:10.1016/j.jpowsour.2008.08.009

    Article  CAS  Google Scholar 

  14. Woodcock DA, Lightfoot P (1999) Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M = Li, Na, K). J Mater Chem 9:2907–2911. doi:10.1039/a904193a

    Article  CAS  Google Scholar 

  15. Oota T, Yamai I (1986) Thermal expansion behavior of NaZr2(PO4)3 type compounds. J Am Ceram Soc 69:1–6. doi:10.1111/j.1151-2916.1986.tb04682.x

    Article  CAS  Google Scholar 

  16. Pet’kov VI, Loshkarev VN, Asabina EA (2004) Heat conductivity of zirconium and alkali metal (Na, Cs) phosphates of the NaZr2(PO4)3 family. Russ J Appl Chem 77:178–181. doi:10.1023/B:RJAC.0000030345.04437.7f

    Article  Google Scholar 

  17. Pet’kov VI, Kir’yanov KV, Orlova AI, Kitaev DB (2001) Thermodynamic properties of the MZr2(PO4)3 (M=Na, K, Rb or Cs) compounds. J Therm Anal Calorim 65:381–389. doi:10.1023/A:1017960531525

    Article  Google Scholar 

  18. (1997) Advanced technical ceramics—monolithic ceramics, thermo-physical properties—Part 2: determination of thermal diffusivity by the laser flash (or heat pulse) method, German version EN 821–2

  19. Dietrich B, Schell G, Bucharsky EC et al (2010) Determination of the thermal properties of ceramic sponges. Int J Heat Mass Transf 53:198–205. doi:10.1016/j.ijheatmasstransfer.2009.09.041

    Article  CAS  Google Scholar 

  20. Peeters JWR, T’Joen C, Rohde M (2013) Investigation of the thermal development length in annular upward heated laminar supercritical fluid flows. Int J Heat Mass Transf 61:667–674. doi:10.1016/j.ijheatmasstransfer.2013.02.039

    Article  CAS  Google Scholar 

  21. Johnson P, Sammes N, Imanishi N et al (2011) Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor. Solid State Ionics 192:326–329. doi:10.1016/j.ssi.2010.01.005

    Article  CAS  Google Scholar 

  22. Soman S, Iwai Y, Kawamura J, Kulkarni A (2011) Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic. J Solid State Electrochem 16:1761–1766. doi:10.1007/s10008-011-1592-4

    Article  Google Scholar 

  23. Chung D (2003) Acid aluminum phosphate for the binding and coating of materials. J Mater Sci 38:2785–2791. doi:10.1023/A:1024446014334

    Article  CAS  Google Scholar 

  24. Rosenberger A, Gao Y, Stanciu L (2015) Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte. Solid State Ionics 278:217–221. doi:10.1016/j.ssi.2015.06.012

    Article  CAS  Google Scholar 

  25. Klemens PG (1993) Heat conduction in solids by phonons. Thermochim Acta 218:247–255. doi:10.1016/0040-6031(93)80426-B

    Article  CAS  Google Scholar 

  26. Hiki Y, Takahashi H, Kogure Y (1994) Study of the thermal transport properties of superionic conducting glasses. Solid State Ionics 70–71:362–367. doi:10.1016/0167-2738(94)90337-9

    Article  Google Scholar 

  27. Liu D-M (1994) Thermal conduction behaviour of (Ca, X)Zr4(PO4)6 ceramic (X = Li, Mg, Zr). J Mater Sci Lett 13:129–130. doi:10.1007/BF00416823

    Article  CAS  Google Scholar 

  28. Chen C-J, Lin L-J, Liu D-M (1994) Synthesis and characterization of (Sr1−x, K2x)Zr4(PO4)6 ceramics. J Mater Sci 29:3733–3737. doi:10.1007/BF00357341

    Article  CAS  Google Scholar 

  29. Maleki H (1999) Thermal properties of lithium-ion battery and components. J Electrochem Soc 146:947. doi:10.1149/1.1391704

    Article  CAS  Google Scholar 

  30. Hummel RE (2012) Electronic properties of materials, 4th edn. Springer. doi:10.1007/978-1-4419-8164-6

  31. Raveendranath K, Ravi J, Tomy RM et al (2007) Evidence of Jahn–Teller distortion in LixMn2O4 by thermal diffusivity measurements. Appl Phys A 90:437–440. doi:10.1007/s00339-007-4294-0

    Article  Google Scholar 

  32. Löbbecke B, Knitter R, Rohde M, Reimann J (2009) Thermal conductivity of sintered lithium orthosilicate compacts. J Nucl Mater 386–388:1068–1070. doi:10.1016/j.jnucmat.2008.12.281

    Article  Google Scholar 

  33. Aono H, Imanaka N, Adachi G, Ceramics C (1994) High Li+ conducting ceramics. Acc Chem Res 27:265–270. doi:10.1021/ar00045a002

    Article  CAS  Google Scholar 

  34. Xu X, Wen Z, Yang X et al (2006) High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics 177:2611–2615. doi:10.1016/j.ssi.2006.04.010

    Article  CAS  Google Scholar 

  35. Jackman SD, Cutler RA (2012) Effect of microcracking on ionic conductivity in LATP. J Power Sources 218:65–72. doi:10.1016/j.jpowsour.2012.06.081

    Article  CAS  Google Scholar 

  36. Morimoto H, Hirukawa M, Matsumoto A et al (2014) Lithium ion conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 solid electrolytes prepared from amorphous powder using a mechanochemical method. Electrochemistry 82:870–874. doi:10.5796/electrochemistry.82.870

    Article  CAS  Google Scholar 

  37. Mariappan CR (2014) AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors. Appl Phys A 117:847–852. doi:10.1007/s00339-014-8440-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft for financing parts of this work (DFG contract number HO1165/18-1) and we also thank Paul Zielonka and Jan Meyer for their support in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Bucharsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucharsky, E.C., Schell, K.G., Hupfer, T. et al. Thermal properties and ionic conductivity of Li1,3Ti1,7Al0,3(PO4)3 solid electrolytes sintered by field-assisted sintering. Ionics 22, 1043–1049 (2016). https://doi.org/10.1007/s11581-015-1628-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1628-3

Keywords

Navigation