Skip to main content
Log in

AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

AC conductivity spectra of Li-analogues NASICON-type Li1.5Al0.5Ge1.5P3O12 (LAGP), Li–Al–Ti–P–O (LATP) glass–ceramics and garnet-type Li7La2Ta2O13 (LLTO) ceramic are analyzed by universal power law and Summerfield scaling approaches. The activation energies and pre-exponential factors of total and grain conductivities are following the Meyer–Neldel (M-N) rule for NASICON-type materials. However, the garnet-type LLTO material deviates from the M-N rule line of NASICON-type materials. The frequency- and temperature-dependent conductivity spectra of LAGP and LLTO are superimposed by Summerfield scaling. The scaled conductivity curves of LATP are not superimposed at the grain boundary response region. The superimposed conductivity curves are observed at cross-over frequencies of grain boundary response region for LATP by incorporating the \( \exp \left( {{{ - (E_{A}^{t} - E_{A}^{g} )} \mathord{\left/ {\vphantom {{ - (E_{A}^{t} - E_{A}^{g} )} {kT}}} \right. \kern-0pt} {kT}}} \right) \) factor along with Summerfield scaling factors on the frequency axis, where \( E_{A}^{t} \) and \( E_{A}^{g} \) are the activation energies of total and grain conductivities, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.L. Sidebottom, Rev. Mod. Phys. 81, 999 (2009)

    Article  ADS  Google Scholar 

  2. J.C. Dyre, P. Maass, B. Roling, D.L. Sidebottom, Rep. Prog. Phys. 72, 046501 (2009)

    Article  ADS  Google Scholar 

  3. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321, 676 (2008)

    Article  ADS  Google Scholar 

  4. D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics 8, 159 (1983)

    Article  Google Scholar 

  5. D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics 9–10, 277 (1983)

    Article  Google Scholar 

  6. P. Lunkenheimer, M. Resch, A. Loidl, Y. Hidaka, Phys. Rev. Lett. 69, 498 (1992)

    Article  ADS  Google Scholar 

  7. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  8. J.L. Barton, Verres Refr. 20, 328 (1966)

    Google Scholar 

  9. T. Nakajima, Annual report, conf. electric insulation and dielectric phenomena (National Academy of Sciences, Washington, 1972)

    Google Scholar 

  10. H. Namikawa, J. Non-Cryst, Solids 18, 173 (1975)

    Google Scholar 

  11. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    Article  ADS  Google Scholar 

  12. D.L. Sidebottom, Phys. Rev. Lett. 83, 983 (1999)

    Article  ADS  Google Scholar 

  13. J.C. Dyre, T.B. Schroder, Rev. Mod. Phys. 72, 873 (2000)

    Article  ADS  Google Scholar 

  14. S. Murugavel, B. Roling, Phys. Rev. Lett. 91, 049602 (2003)

    Article  ADS  Google Scholar 

  15. S. Murugavel, B. Roling, J. Phys. Chem. B 108, 2564 (2004)

    Article  Google Scholar 

  16. M.M. Ahmad, Phys. Rev. B 72, 174303 (2005)

    Article  ADS  Google Scholar 

  17. M.M. Kumar, Z.-G. Ye, Phys. Rev. B 72, 024104 (2005)

    Article  ADS  Google Scholar 

  18. T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, Chem. Comm. 46, 1661 (2010)

    Article  Google Scholar 

  19. B. Kumar, J. Kumar, R. Leese, J.P. Fellner, S.J. Rodrigues, K.M. Abraham, J. Electrochem. Soc. 157, A50 (2010)

    Article  Google Scholar 

  20. M. Zhang, K. Takahashi, N. Imanishi, Y. Takeda, O. Yamamoto, B. Chi, J. Pu, J. Li, J. Electrochem. Soc. 159, A1114 (2012)

    Article  Google Scholar 

  21. W.G. Wang, X.P. Wang, Y.X. Gao, Q.F. Fang, Solid State Ionics 180, 1252 (2009)

    Article  Google Scholar 

  22. T. Dosdale, R.J. Brook, J. Mater. Sci. 13, 167 (1978)

    Article  ADS  Google Scholar 

  23. D.P. Almond, A.R. West, Solid State Ionics 18–19, 1105 (1986)

    Article  Google Scholar 

  24. D.P. Almond, A.R. West, Solid State Ionics 23, 27 (1987)

    Article  Google Scholar 

  25. A.S. Nowick, W.-K. Lee, H. Jain, Solid State Ionics 28–30, 89 (1988)

    Article  Google Scholar 

  26. C. Liu, C.A. Angell, J. Non-Cryst, Solids 83, 162 (1986)

    Google Scholar 

  27. C.R. Mariappan, G. Govindaraj, B. Roling, Solid State Ionics 176, 723 (2005)

    Article  Google Scholar 

  28. M. Gellert, K.L. Gries, C. Yada, F. Rosciano, K. Volz, B. Roling, J. Phys. Chem. C 116, 22675 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Prof. Bernhard Roling, University of Marburg, Germany, for appropriate suggestions in scaling analysis. I thank profusely Scott E. Harpstrite and Dr. S. Jothilingam, Washington University in St. Louis, USA, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Mariappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariappan, C.R. AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors. Appl. Phys. A 117, 847–852 (2014). https://doi.org/10.1007/s00339-014-8440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8440-1

Keywords

Navigation