Skip to main content

Advertisement

Log in

Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson GR (1958) Ecology of Azotobacter in soils of the Palouse region I. Occurrence. Soil Sci 86:57–62

    Article  Google Scholar 

  • Anita S, Ponmurugan P (2011) In vitro evaluation of Trichoderma atroviride against Phomopsis theae, a casual agent of collar canker disease in tea plants. Int J Agric Res 6:620–631

    Article  CAS  Google Scholar 

  • Antal Z, Manczinger L, Szakács G, Tengerdy RP, Ferenczy L (2000) Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species. Mycol Res 104:545–549

    Article  CAS  Google Scholar 

  • Begoude BAD, Lahlali R, Friel D, Tondje PR, Jijakli MH (2007) Response surface methodology study of the combined effects of temperature, pH, and a w on the growth rate of Trichoderma asperellum. J Appl Microbiol 103:845–854

    Article  CAS  Google Scholar 

  • Belić M, Manojlović M, Lj N, Ćirić V, Vasin J, Benka P, Šeremešić S (2013) Pedoecological significance of soil organic carbon stock in south-eastern Pannonian Basin. Carpath J Earth Env 8:171–178

    Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    Google Scholar 

  • Bonifacio E, Falsone G, Piazza S (2010) Linking Ni and Cr concentrations to soil mineralogy: does it help to assess metal contamination when the natural background is high? J Soils Sediments 10(8):1475–1486

    Article  CAS  Google Scholar 

  • Ćirić V, Manojlović M, Lj N, Belić M (2012) Soil dry aggregate size distribution: effects of soil type and land use. J Soil Sci Plant Nutr 12(4):689–703

    Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. Amer Statist Assoc 74(368):829–836

    Article  Google Scholar 

  • De Freitas LA, Ferreira De Moura G, Barbosa De Lima MA, Mendes De Souza P, Albero Alves Da Silva C, Maria De Campos Takaki G, Nascimento ED (2011) Role of the morphology and polyphosphate in Trichoderma harzianum related to cadmium removal. Molecules 16:2486–2500

    Article  Google Scholar 

  • Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Progr 7:177–219

    Article  Google Scholar 

  • Druzhinina I, Kopchinskiy A, Komoñ M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  Google Scholar 

  • Eastburn DM, Butler EE (1988a) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting distribution. Soil Biol Biochem 20:547–553

    Article  Google Scholar 

  • Eastburn DM, Butler EE (1988b) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting population density. Soil Biol Biochem 20:541–545

    Article  Google Scholar 

  • Eastburn DM, Butler EE (1991) Effects of soil moisture and temperature on the saprophytic ability of Trichoderma harzianum. Mycologia 83:257–263

    Article  Google Scholar 

  • Egner H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. K Lantbrukshoegsk Ann 26:199–215

    CAS  Google Scholar 

  • Estudio y Gestión Ambiental (E&GA) (2010) Trichoderma spp. and its potential in soil bioremediation, Drynet Science & Technology Expertise, http://dry-net.org/wp-content/uploads/2015/09/100221_Trichoderma_spp_and_its_potential_in_soil_bioremedi.pdf

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pol 114:313–324

    Article  CAS  Google Scholar 

  • Friedl MA, Druzhinina IS (2012) Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology (UK) 158:69–83

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    Article  CAS  Google Scholar 

  • Hatvani L, Manczinger L, Vágvölgyi C, Kredics L (2013) Trichoderma as a human pathogen. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma—biology and applications. CABI, Wallingford, pp. 292–313

    Chapter  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  • Jacoby WG (2000) LOESS: a nonparametric, graphical tool for depicting relationships between variables. Elect Stud 19(4):577–613

    Article  Google Scholar 

  • Kacprzak M, Malina G (2005) The tolerance and Zn2+, Ba2+ and Fe3+ accumulation by Trichoderma atroviride and Mortierella exigua isolated from contaminated soil. Can J Soil Sci 85:283–290

    Article  CAS  Google Scholar 

  • Karkanis PG, Au K, Schaalje GB (1991) Comparison of four measurement schedules for determination of soil particle-size distribution by the hydrometer method. Can Agr Eng 33:211–215

    Google Scholar 

  • King AD Jr, Hocking AD, Pitt JI (1979) Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Appl Environ Microbiol 37:959–964

    Google Scholar 

  • Körmöczi P, Danilović G, Manczinger L, Lj J, Panković D, Vágvölgyi C, Kredics L (2013) Species composition of Trichoderma isolates from the rhizosphere of vegetables grown in Hungarian soils. Fres Environ Bull 22:1736–1741

    Google Scholar 

  • Kostić N, Wilson J, Živkovic M, Bain D (1998) Mineralogy and geochemical speciation of heavy metals in some serpentine soils of Serbia. 16th world congress of soil science. Elsevier, Amsterdam, pp. 444–455

    Google Scholar 

  • Krasiljnikov NA (1965) Biology of some actinomycetes groups. Science, Moscow

    Google Scholar 

  • Kredics L, Antal Z, Manczinger L (2000) Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures. Curr Microbiol 40:310–314

    Article  CAS  Google Scholar 

  • Kredics L, Dóczi I, Antal Z, Manczinger L (2001) Effect of heavy metals on growth and extracellular enzyme activities of mycoparasitic Trichoderma strains. Bull Environ Contam Toxicol 66:249–254

    Article  CAS  Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol Biotechnol 41:37–42

    Google Scholar 

  • Kredics L, Manczinger L, Antal Z, Pénzes Z, Szekeres A, Kevei F, Nagy E (2004) In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 96:491–498

    Article  CAS  Google Scholar 

  • Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vágvölgyi C, Druzhinina I (2014) Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy M (eds) Biotechnology and biology of Trichoderma. Elsevier Science B.V, Amsterdam, pp. 3–24

    Chapter  Google Scholar 

  • Lee CS, Kao MM (2004) Distribution of forms of heavy metals in soils contaminated by metallurgical smelter emissions. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:577–585

    Article  Google Scholar 

  • Longa CM, Pertot I, Tosi S (2008) Ecophysiological requirements of a Trichoderma atroviride isolate with biocontrol potential. J Basic Microbiol 48:269–277

    Article  CAS  Google Scholar 

  • Longa CM, Savazzini F, Tosi S, Elad Y, Pertot I (2009) Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. J Appl Microbiol 106:1549–1557

    Article  CAS  Google Scholar 

  • Lopez EE, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  Google Scholar 

  • Milenkovic B, Stajic JM, Gulan L, Zeremski T, Nikezic D (2015) Radioactivity levels and heavy metals in the urban soil of central Serbia. Environ Sci Pollut Res 22:16732–16741

    Article  CAS  Google Scholar 

  • Muniappan V, Muthukumar T (2014) Influence of crop species and edaphic factors on the distribution and abundance of Trichoderma in Alfisol soils of southern India. Acta Bot Croat 73:37–50

    CAS  Google Scholar 

  • Naár Z, Dobos A (2006) Redundancy analysis of the influence of metal content and other edaphic parameters on the coexsistence of Trichoderma species. Appl Ecol Environ Res 4:113–123

    Article  Google Scholar 

  • Pochon J, Tardieux P (1962) Techniques d’analyse en microbiologie du sol. Editions de la Tourelle, Saint Mandé 111p

    Google Scholar 

  • Richards LA (1948) Porous plate apparatus for measuring moisture retention and transmission by soil. Soil Sci 66:105–110

    Article  CAS  Google Scholar 

  • Schubert M, Mourad S, Fink S, Schwarze FWMR (2009) Ecophysiological responses of the biocontrol agent Trichoderma atroviride (T-15603.1) to combined environmental parameters. Biol Control 49:84–90

    Article  Google Scholar 

  • Simakov VN (1957) The use of phenylanthranilic acid in the determination of humus by Tyurin’s method. Pochvovedenie 8:72–73

    Google Scholar 

  • Škorić, A, Filipovski G, Ćirić M (1985) Classification of Yugoslav soils. Academy of Sciencies

    Google Scholar 

  • Stajic JM, Milenkovic B, Pucarevic M, Stojic N, Vasiljevic I, Nikezic D (2016) Exposure of school children to polycyclic aromatic hydrocarbons, heavy metals and radionuclides in the urban soil of Kragujevac City, central Serbia. Chemosphere 146:68–74

    Article  CAS  Google Scholar 

  • Thalmann A (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258

    CAS  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Techn Envir 15:541–550

    Article  CAS  Google Scholar 

  • Tyurin IV (1931) A modification of a volumetric method of humus determination with chromic acid. Pochvovedenie 36(5–6):36

    Google Scholar 

  • VROM (2000) Circular on target values and intervention values for soil remediation annex A: target values, soil remediation intervention values and indicative levels for serious contamination. Dutch Ministry of Housing, Spatial Planning and Environment (VROM) http://www.esdat.net/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Environmental%20Standards.pdf

  • Wyszkowska J, Boros E, Kucharski J (2007) Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environ 53:544–552

    CAS  Google Scholar 

  • Yamazaki Y, Tojo M, Hoshino T, Kida K, Sakamoto T, Ihara H, Yumoto I, Tronsmo AM, Kanda H (2011) Characterization of Trichoderma polysporum from Spitsbergen, Svalbard archipelago, Norway, with species identity, pathogenicity to moss, and polygalacturonase activity. Fungal Ecol 4:15–21

    Article  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research is co-financed by the European Union through the Hungary-Serbia IPA Cross-border Co-operation Program (PHANETRI, HUSRB/1002/214/068), by the Ministry of Educationand Science of the Republic of Serbia (Project No. III43010 and TR 31080), and by the EuropeanUnion within the frames of the Széchenyi 2020 Programme (GINOP-2.3.2-15-2016-00052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Racić.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Racić, G., Körmöczi, P., Kredics, L. et al. Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp.. Environ Sci Pollut Res 24, 3375–3386 (2017). https://doi.org/10.1007/s11356-016-8067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8067-1

Keywords

Navigation