Skip to main content
Log in

Upscaling of Anomalous Pore-Scale Dispersion

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We study the upscaling of advective pore-scale dispersion in terms of the Eulerian velocity distribution and advective tortuosity, both flow attributes, and of the average pore length, a medium attribute. The stochastic particle motion is modeled as a time-domain random walk, in which particles move along streamlines in equidistant spatial steps with random velocities and thus random transition times. Particle velocities describe stationary spatial Markov processes, which evolve along streamlines on the mean pore length. The streamwise motion is projected onto the mean flow direction using tortuosity. This upscaled stochastic particle model predicts accurately the (non-Fickian) transport dynamics obtained from direct numerical simulations of particle transport in a three-dimensional digitized Berea sandstone sample. It captures all aspects of transport and sheds light on the dependence of the upscaled transport behavior on the flow heterogeneity and the initial particle distribution, which are critical for the accurate modeling of dispersion from the pre-asymptotic to asymptotic regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Bear, J.: Dynamics of fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  • Berkowitz, B., Scher, H.: On characterization of anomalous dispersion in porous and fractured media. Water Resour. Res. 31(6), 1461–1466 (1995)

    Article  Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006). https://doi.org/10.1029/2005RG000178

  • Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42, W01202 (2006). https://doi.org/10.1029/2005WR004578

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 204502 (2011)

    Article  Google Scholar 

  • Brenner, H., Edwards, D.: Macrotransport Processes. Butterworth-Heinemann, Waltham (1993)

    Google Scholar 

  • Carrel, M., Morales, V.L., Dentz, M., Derlon, N., Morgenroth, E., Holzner, M.: Pore-scale hydrodynamics in a progressively bioclogged three-dimensional porous medium: 3-d particle tracking experiments and stochastic transport modeling. Water Resour. Res. 54(3), 2183–2198 (2018)

    Article  Google Scholar 

  • Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerà, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6(1), 178–190 (1998)

    Article  Google Scholar 

  • Cherblanc, F., Ahmadi, A., Quintard, M.: Two-domain description of solute transport in heterogeneous porous media: comparison between theoretical predictions and numerical experiments. Adv. Water Resour. 30, 1127–1143 (2007)

    Article  Google Scholar 

  • Comolli, A., Dentz, M.: Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach. Eur. Phys. J. B 90(9), 166 (2017)

    Article  Google Scholar 

  • Davit, Y., Quintard, M., Debenest, G.: Equivalence between volume averaging and moments matching techniques for mass transport models in porous media. Int. J. Heat Mass Transf. 53(21–22), 4985–4993 (2010)

    Article  Google Scholar 

  • De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)

    Article  Google Scholar 

  • De Anna, P., Quaife, B., Biros, G., Juanes, R.: Prediction of velocity distribution from pore structure in simple porous media. Phys. Rev. Fluids 2, 124103 (2017)

    Article  Google Scholar 

  • Longitudinal and transverse diffusion in granular deposits: de Josselin de Jong, G. Trans. Am. Geophys. Union 39, 67–74 (1958)

    Article  Google Scholar 

  • Dentz, M., Berkowitz, B.: Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39(5), 1111 (2003). https://doi.org/10.1029/2001WR001163

    Article  Google Scholar 

  • Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W.: Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point-like injection. Water Resour. Res. 36(12), 3591–3604 (2000)

    Article  Google Scholar 

  • Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27(2), 155–173 (2004)

    Article  Google Scholar 

  • Dentz, M., Borgne, T.L., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120–121, 1–17 (2011)

    Article  Google Scholar 

  • Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T., Lester, D.R.: Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1(7), 074004 (2016)

    Article  Google Scholar 

  • Dentz, M., Icardi, M., Hidalgo, J.J.: Mechanisms of dispersion in a porous medium. J. Fluid Mech. 841, 851–882 (2018)

    Article  Google Scholar 

  • Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)

    Book  Google Scholar 

  • Gardiner, C.: Stochastic Methods. Springer, Berlin (2010)

    Google Scholar 

  • Ghanbarian, B., Hunt, A., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77(1461), 1461–1477 (2013)

    Article  Google Scholar 

  • Gjetvaj, F., Russian, A., Gouze, P., Dentz, M.: Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in berea sandstone. Water Resour. Res. 51(10), 8273–8293 (2015)

    Article  Google Scholar 

  • Haggerty, R., Gorelick, S.M.: Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media with Pore-Scale Heterogeneity. Water Resour. Res. 31(10), 2383–2400 (1995)

    Article  Google Scholar 

  • Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92, 013015 (2015)

    Article  Google Scholar 

  • Jin, C., Langston, P.A., Pavlovskaya, G.E., Hall, M.R., Rigby, S.P.: Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media. Phys. Rev. E 93, 013122 (2016)

    Article  Google Scholar 

  • Kang, P.K., de Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E 54, 406–410 (1996)

    Article  Google Scholar 

  • Le Borgne, T., Gouze, P.: Non-Fickian dispersion in porous media: 2. Model validation from measurements at different scales. Water Resour. Res. 44, W06427 (2008). https://doi.org/10.1029/2007WR006279

  • Le Borgne, T., Bolster, D., Dentz, M., de Anna, P., Tartakovsky, A.: Effective pore-scale dispersion upscaling witha correlated continuous time random walk approach. Water Resour. Res. 47, W12538 (2011). https://doi.org/10.1029/2011WR010457

    Article  Google Scholar 

  • Leal, L.G.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge Series in Chemical Engineering. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  • Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64(3), 203–226 (2003)

    Article  Google Scholar 

  • Matyka, M., Golembiewski, J., Koza, Z.: Power-exponential velocity distributions in disordered porous media. Phys. Rev. E 93, 013110 (2016)

    Article  Google Scholar 

  • Meyer, D.W., Bijeljic, B.: Pore-scale dispersion: bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior. Phys. Rev. E 94(1), 013107 (2016)

    Article  Google Scholar 

  • Morales, V.L., Dentz, M., Willmann, M., Holzner, M.: Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: experiments and theory. Geophys. Res. Lett. 44(18), 9361–9371 (2017)

    Article  Google Scholar 

  • Moroni, M., Kleinfelter, N., Cushman, J.H.: Analysis of dispersion in porous media via matched-index particle tracking velocimetry experiments. Adv. Water Resour. 30(1), 1–15 (2007)

    Article  Google Scholar 

  • Mostaghimi, P., Bijeljic, B., Blunt, M., et al.: Simulation of flow and dispersion on pore-space images. SPE J. 17(04), 1–131 (2012)

    Article  Google Scholar 

  • Neuman, S., Tartakovsky, D.: Perspective on theories of non-Fickian transport in heterogeneous media. Adv. Water Resour. 32(5), 670–680 (2009)

    Article  Google Scholar 

  • Nicolaides, C., Cueto-Felgueroso, L., Juanes, R.: Anomalous physical transport in complex networks. Phys. Rev. E 82, 055101 (2010)

    Article  Google Scholar 

  • Noetinger, B., Roubinet, D., Russian, A., Le Borgne, T., Delay, F., Dentz, M., De Dreuzy, J.-R., Gouze, P.: Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale. Transp. Porous Media 115, 345–385 (2016)

    Article  Google Scholar 

  • Paganin, D., Mayo, S., Gureyev, T.E., Miller, P.R., Wilkins, S.W.: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206(1), 33–40 (2002)

    Article  Google Scholar 

  • Painter, S., Cvetkovic, V.: Upscaling discrete fracture network simulations: an alternative to continuum transport models. Water Resour. Res. 41, W02002 (2005)

    Article  Google Scholar 

  • Pollock, D.W.: Semianalytical computation of path lines for finite-difference models. Ground Water 26(6), 743–750 (1988)

    Article  Google Scholar 

  • Porta, G., Chaynikov, S., Riva, M., Guadagnini, A.: Upscaling solute transport in porous media from the pore scale to dual-and multicontinuum formulations. Water Resour. Res. 49(4), 2025–2039 (2013)

    Article  Google Scholar 

  • Porta, G.M., Bijeljic, B., Blunt, M., Guadagnini, A.: Continuum-scale characterization of solute transport based on pore-scale velocity distributions. Geophys. Res. Lett. 42(18), 7537–7545 (2015)

    Article  Google Scholar 

  • Puyguiraud, A., Gouze, P., Dentz, M.: Stochastic dynamics of Lagrangian pore-scale velocities in three-dimensional porous media. Water Resour. Res. 55, 1196–1217 (2019)

    Article  Google Scholar 

  • Risken, H.: The Fokker-Planck Equation. Springer, Heidelberg (1996)

    Book  Google Scholar 

  • Saffman, P.: A theory of dispersion in a porous medium. J. Fluid Mech. 6(03), 321–349 (1959)

    Article  Google Scholar 

  • Salles, J., Thovert, J.-F., Delannay, R., Prevors, L., Auriault, J.-L., Adler, P.: Taylor dispersion in porous media. determination of the dispersion tensor. Phys. Fluids A Fluid Dyn. 5(10), 2348–2376 (1993)

  • Sanchez, S., Ahlberg, P.E., Trinajstic, K.M., Mirone, A., Tafforeau, P.: Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc. Microanal. 18(5), 1095–1105 (2012)

    Article  Google Scholar 

  • Sherman, T., Paster, A., Porta, G., Bolster, D.: A spatial Markov model for upscaling transport of adsorbing-desorbing solutes. J. Contam. Hydrol. 222, 31–40 (2019)

    Article  Google Scholar 

  • Siena, M., Riva, M., Hyman, J., Winter, C.L., Guadagnini, A.: Relationship between pore size and velocity probability distributions in stochastically generated porous media. Phys. Rev. E 89(1), 013018 (2014)

    Article  Google Scholar 

  • Smal, P., Gouze, P., Rodriguez, O.: An automatic segmentation algorithm for retrieving sub-resolution porosity from x-ray tomography images. J. Pet. Sci. Eng. 166, 198–207 (2018)

    Article  Google Scholar 

  • Sund, N., Bolster, D., Mattis, S., Dawson, C.: Pre-asymptotic transport upscaling in inertial and unsteady flows through porous media. Transp. Porous Media 109(2), 411–432 (2015)

    Article  Google Scholar 

  • Sund, N.L., Porta, G.M., Bolster, D.: Upscaling of dilution and mixing using a trajectory based spatial Markov random walk model in a periodic flow domain. Adv. Water Resour. 103, 76–85 (2017)

    Article  Google Scholar 

  • Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Physics 12(6), 620–631 (1998)

    Article  Google Scholar 

  • Whitaker, S.: The Method of Averaging. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  • Wood, B.D.: The role of scaling laws in upscaling. Adv. Water Resour. Dispers. Porous Media 32(5), 723–736 (2009)

    Article  Google Scholar 

  • Wright, E., Sund, N., Richter, D., Porta, G., Bolster, D.: Upscaling mixing in highly heterogeneous porous media via a spatial Markov model. Water 11(1), 53 (2019)

    Article  Google Scholar 

Download references

Funding

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement No. 617511 (MHetScale). This work was partially funded by the CNRS-PICS project CROSSCALE, project number 280090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Dentz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A Tortuosity

We derive here the average of the \(\omega _1(s,\mathbf {a})\) along a streamline under ergodic conditions. To this end, we first note that the position \(x_1(s,\mathbf {a})\) can be written by integration of (3) as

$$\begin{aligned} x_1(s,\mathbf {a})=s\left[ \frac{1}{s}\int _0^s \omega _1(s',\mathbf {a}) \mathrm{d}s'\right] . \end{aligned}$$
(33)

The expression in the square brackets denotes the average of \(\omega _1(s,\mathbf {a})\) along a particle trajectory. At the same time, it denotes the ratio of linear to streamwise distance,

$$\begin{aligned} \langle \omega _1(s,\mathbf {a}) \rangle _\mathrm{s} = \lim _{s \rightarrow \infty } \frac{1}{s}\int _0^s \omega _1(s',\mathbf {a}) \mathrm{d}s' = \frac{x_1(s,\mathbf {a})}{s}, \end{aligned}$$
(34)

where the angular brackets with subscript s denote the streamwise average along a trajectory. The average of \(\omega _1(s,\mathbf {a})\) over an ensemble of particles is defined by

$$\begin{aligned} \langle \omega _1(s,\mathbf {a}) \rangle = \lim _{V_0 \rightarrow \infty }\frac{1}{V_0}\int _{\varOmega _0} \frac{v_1[\mathbf {x}(s,\mathbf {a})]}{v_\mathrm{e}[\mathbf {x}(s,\mathbf {a})]} \rho (\mathbf {a}) \mathrm{d}\mathbf {a}. \end{aligned}$$
(35)

We consider a flux-weighted initial condition, see (4). Under ergodic conditions, this initial condition corresponds to the steady state velocity PDF \(p_\mathrm{s}(v)\), which is equal to the flux-weighted Eulerian velocity PDF. This can be seen by using

$$\begin{aligned} \rho (\mathbf {a}) = \frac{1}{V_0}\frac{v_\mathrm{e}(\mathbf {a})}{\langle v_\mathrm{e}(\mathbf {x}) \rangle } \mathbb I(\mathbf {a}\in \varOmega _0), \end{aligned}$$
(36)

in the limit \(V_0 \rightarrow \infty \). Also, Koponen et al. (1996) pointed out that it is natural for porous media to consider a flux-weighted average, see also Ghanbarian et al. (2013). Furthermore, under ergodic conditions, the average over a single-particle trajectory is equal to the average over the initial ensemble of particles and so

$$\begin{aligned} \langle \omega _1(s,\mathbf {a}) \rangle _\mathrm{s} = \langle \omega _1(s,\mathbf {a}) \rangle = \frac{\langle x_1(s,\mathbf {a})\rangle }{s} = \chi ^{-1}. \end{aligned}$$
(37)

Using expression (36) in (35), we obtain

$$\begin{aligned} \langle \omega _1(s,\mathbf {a}) \rangle = \lim _{V_0 \rightarrow \infty } \frac{1}{V_0} \int _{\varOmega _0} \frac{v_1[\mathbf {x}(s,\mathbf {a})]}{v_\mathrm{e}[\mathbf {x}(s,\mathbf {a})]} \frac{v_\mathrm{e}(\mathbf {a})}{\langle v_\mathrm{e}(\mathbf {x}) \rangle }\mathrm{d}\mathbf {a}. \end{aligned}$$
(38)

In order to evaluate this expression, we perform the variable change \(\mathbf {a}\rightarrow \mathbf {x}(s,\mathbf {a})\),

$$\begin{aligned} \langle \omega _1(s,\mathbf {a}) \rangle = \lim _{V_0 \rightarrow \infty } \frac{1}{V_0} \int _{\varOmega (s)} \frac{v_1[\mathbf {x}(s,\mathbf {a})]}{v_\mathrm{e}[\mathbf {x}(s,\mathbf {a})]} \frac{v_\mathrm{e}(\mathbf {a})}{\langle v_\mathrm{e}(\mathbf {x}) \rangle } \mathbb J(\mathbf {a},s)^{-1} \mathrm{d}\mathbf {x}, \end{aligned}$$
(39)

where \(\mathbb J(\mathbf {a}, s)\) is the Jacobian of the transformation. It can be determined by noting that (Batchelor 2000, p. 75)

$$\begin{aligned} \frac{\mathrm{d}\mathbb J(\mathbf a,s)}{\mathrm{d}s} = \mathbb J(\mathbf a,s) \nabla \cdot \frac{{\mathbf {v}}[{\mathbf {x}}(s,\mathbf {a})]}{v_\mathrm{e}[\mathbf {x}(s,\mathbf {a})]}. \end{aligned}$$
(40)

This differential equation can be integrated by noting that \(\nabla \cdot {\mathbf {v}}(\mathbf {x}) = 0\) and

$$\begin{aligned} \frac{\mathrm{d}v_\mathrm{e}[\mathbf {x}(s,\mathbf {a})]}{\mathrm{d}s} = \nabla v_\mathrm{e}[\mathbf {x}(s,\mathbf {a})] \cdot {\mathbf {v}}[\mathbf {x}(s,\mathbf {a})], \end{aligned}$$
(41)

which follows by using the chain rule and (3). Thus, we obtain for the initial condition \(\mathbb J(\mathbf {a},s = 0) = 1\) that

$$\begin{aligned} \mathbb J(\mathbf {a},s)=\frac{v_\mathrm{e}(\mathbf {a})}{v_\mathrm{e}[\mathbf {x}(s,\mathbf {a})]}. \end{aligned}$$
(42)

Inserting this expression into (38) gives

$$\begin{aligned} \langle \omega _1(s,\mathbf {a}) \rangle = \lim _{V_0 \rightarrow \infty } \frac{1}{V_0}\int _{\varOmega (s)} \frac{v_1(\mathbf {x})}{\langle v_\mathrm{e}(\mathbf {a}) \rangle }\mathrm{d}\mathbf {x}= \frac{\langle v_1 \rangle }{\langle v_\mathrm{e} \rangle }. \end{aligned}$$
(43)

This result is consistent with Koponen et al. (1996). This implies that at \(s \gg \ell _\mathrm{p}\), we can set

$$\begin{aligned} \langle \omega _1(s,\mathbf {a}) \rangle = \chi ^{-1} = \frac{\langle v_1 \rangle }{\langle v_\mathrm{e} \rangle }. \ \end{aligned}$$
(44)

Appendix: B Continuous-Time Random Walk

For transition length of the order of the correlation length \(\ell _\mathrm{c}\), subsequent particle velocities can be considered independent and thus, the space-time particle motion (13a) may be approximated by

$$\begin{aligned} x_{n+1} = x_n + \frac{\ell _\mathrm{c}}{\chi }, \qquad t_{n+1} = t_n + \tau _n, \end{aligned}$$
(45)

where \(x_n = x(s_n)\) with \(s_n = n \ell _\mathrm{c}\). The random transition time \(\tau _n\) is given by

$$\begin{aligned} \tau _n = \frac{\ell _\mathrm{c}}{v_\mathrm{s}(s_n)}. \end{aligned}$$
(46)

The time increments for \(n > 0\) are distributed as

$$\begin{aligned} \psi (t) = \frac{\ell _\mathrm{c}}{t^2} p_\mathrm{s}(\ell _\mathrm{c}/t). \end{aligned}$$
(47)

For \(n = 0\), the transition time PDF is distributed according to

$$\begin{aligned} \psi _0(t) = \frac{\ell _\mathrm{c}}{t^2} p_0(\ell _\mathrm{c}/t). \end{aligned}$$
(48)

Under steady state conditions, this means for \(p_0(v) = p_\mathrm{s}(v)\) and thus \(\psi _0(v) = \psi (v)\), Eq. (45) describes a continuous-time random walk as discussed in Berkowitz et al. (2006). Thus, the asymptotic behavior of the breakthrough curves and displacement moments can be predicted based on the scalings of the transition time distribution. For \(\psi (t) \propto t^{-1-\beta }\) at large times, the breakthrough curves scale as \(f(t,x_1) \propto t^{-1-\beta }\), the mean displacement as \(m_1(t) \propto t\), and the displacement variance as \(\sigma ^2(t) \propto t^{3 - \beta }\). Note that this scaling for \(\psi (t)\) implies that the velocity distribution \(p_\mathrm{s}(v) \propto v^{\beta -1}\) at small velocities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puyguiraud, A., Gouze, P. & Dentz, M. Upscaling of Anomalous Pore-Scale Dispersion. Transp Porous Med 128, 837–855 (2019). https://doi.org/10.1007/s11242-019-01273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01273-3

Navigation